自考问答 自考本科自考百科
自考问答 > 自考百科 > 自考分子生物学知识框架图解

自考分子生物学知识框架图解

发布时间:

自考分子生物学知识框架图解

发布时间:

自考分子生物学知识框架图解

一、知识要点核酸分两大类:DNA和RNA.所有生物细胞都含有这两类核酸.但病毒不同,DNA病毒只含有DNA,RNA病毒只含RNA.核酸的基本结构单位是核苷酸.核苷酸由一个含氮碱基(嘌呤或嘧啶),一个戊糖(核糖或脱氧核糖)和一个或几个磷酸组成.核酸是一种多聚核苷酸,核苷酸靠磷酸二酯键彼此连接在一起.核酸中还有少量的稀有碱基.RNA中的核苷酸残基含有核糖,其嘧啶碱基一般是尿嘧啶和胞嘧啶,而DNA中其核苷酸含有2′-脱氧核糖,其嘧啶碱基一般是胸腺嘧啶和胞嘧啶.在RNA和DNA中所含的嘌呤基本上都是鸟嘌呤和腺嘌呤.核苷酸在细胞内有许多重要功能:它们用于合成核酸以携带遗传信息;它们还是细胞中主要的化学能载体;是许多种酶的辅因子的结构成分,而且有些(如cAMP、cGMP)还是细胞的第二信使.DNA的空间结构模型是在1953年由Watson和Crick两个人提出的.建立DNA空间结构模型的依据主要有两方面:一是由Chargaff发现的DNA中碱基的等价性,提示A=T、G≡C间碱基互补的可能性;二是DNA纤维的X-射线衍射分析资料,提示了双螺旋结构的可能性.DNA是由两条反向直线型多核苷酸组成的双螺旋分子.单链多核苷酸中两个核苷酸之间的唯一连键是3′,5′-磷酸二酯键.按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行.两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系.维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小.DNA能够以几种不同的结构形式存在.从B型DNA转变而来的两种结构A型和Z型结构巳在结晶研究中得到证实.在顺序相同的情况下A型螺旋较B型更短,具有稍大的直径.DNA中的一些特殊顺序能引起DNA弯曲.带有同一条链自身互补的颠倒重复能形成发卡或十字架结构,以镜影排列的多嘧啶序列可以通过分子内折叠形成三股螺旋,被称为H -DNA的三链螺旋结构.由于它存在于基因调控区,因而有重要的生物学意义.不同类型的RNA分子可自身回折形成发卡、局部双螺旋区,形成二级结构,并折叠产生三级结构,RNA与蛋白质复合物则是四级结构.tRNA的二级结构为三叶草形,三级结构为倒L形.mRNA则是把遗传信息从DNA转移到核糖体以进行蛋白质合成的载体.核酸的糖苷键和磷酸二酯键可被酸、碱和酶水解,产生碱基、核苷、核苷酸和寡核苷酸.酸水解时,糖苷键比磷酸酯键易于水解;嘌呤碱的糖苷键比嘧啶碱的糖苷键易于水解;嘌呤碱与脱氧核糖的糖苷键最不稳定.RNA易被稀碱水解,产生2’-和3’-核苷酸,DNA对碱比较稳定.细胞内有各种核酸酶可以分解核酸.其中限制性内切酶是基因工程的重要工具酶.核酸的碱基和磷酸基均能解离,因此核酸具有酸碱性.碱基杂环中的氮具有结合和释放质子的能力.核苷和核苷酸的碱基与游离碱基的解离性质相近,它们是兼性离子.核酸的碱基具有共轭双键,因而有紫外吸收的性质.各种碱基、核苷和核苷酸的吸收光谱略有区别.核酸的紫外吸收峰在260nm附近,可用于测定核酸.根据260nm与280nm的吸收光度(A260)可判断核酸纯度.变性作用是指核酸双螺旋结构被破坏,双链解开,但共价键并未断裂.引起变性的因素很多,升高温度、过酸、过碱、纯水以及加入变性剂等都能造成核酸变性.核酸变性时,物理化学性质将发生改变,表现出增色效应.热变性一半时的温度称为熔点或变性温度,以Tm来表示.DNA的G+C含量影响Tm值.由于G≡C比A=T碱基对更稳定,因此富含G≡C的DNA比富含A=T的DNA具有更高的熔解温度.根据经验公式xG+C =(Tm - 69.3)× 2.44可以由DNA的Tm值计算G+C含量,或由G+C含量计算Tm值.变性DNA在适当条件下可以复性,物化性质得到恢复,具有减色效应.用不同来源的DNA进行退火,可得到杂交分子.也可以由DNA链与互补RNA链得到杂交分子.杂交的程度依赖于序列同源性.分子杂交是用于研究和分离特殊基因和RNA的重要分子生物学技术.染色体中的DNA分子是细胞内最大的大分子.许多较小的DNA分子,如病毒DNA、质粒DNA、线粒体DNA和叶绿体[]NA也存在于细胞中.许多DNA分子,特别是细菌的染色体DNA和线粒体、叶绿体DNA是环形的.病毒和染色体DNA有一个共同的特点,就是它们比包装它们的病毒颗粒和细胞器要长得多,真核细胞所含的DNA要比细菌细胞多得多.真核细胞染色质组织的基本单位是核小体,它由DNA和8个组蛋白分子构成的蛋白质核心颗粒组成.其中H2A,H2B,H3,H4各占两个分子,有一段DNA(约146bp)围绕着组蛋白核心形成左手性的线圈型超螺旋.细菌染色体也被高度折叠,压缩成拟核结构,但它们比真核细胞染色体更富动态和不规则,这反映了原核生物细胞周期短和极活跃的细胞代谢.

组蛋白:是真核生物体细胞染色质和原核生物中的碱性蛋白质。组蛋白和DNA共同组成核小体结构,“核小体”是染色体的基本结构单位,一个核小体由两个组蛋白H2A,两个组蛋白H2B,两个组蛋白H3,两个组蛋白H4组成的八聚体和147bp缠绕在外面的DNA组成。 核心启动子(core promoter):是指在体外测定到的由RNApolyⅡ进行精确转录其实要求的一套DNA序列元件。 沉默子(sliencer):一种转录负调控元件,当其结合特定的蛋白因子时,对基因的转录起阻遏作用。 增强子(enhancer):该DNA 序列可增加与其连锁的基因的转录频率。 终止子(terminator):位于基因编码区下游,能够终止RNA转录合成的一段特殊DNA序列。 绝缘子(insulator):在基因组上建立独立转录活性结构域的边界DNA序列。能够阻止临近的增强子或沉默子对其界定的基因启动子发挥调控作用。 转座子(transpon):一段可以从原单位上单独复制或断裂下来,环化后插入另一位点,并对其后的基因起调控作用的DNA序列。 反转座子(retranspon):先转录成RNA然后再反转录为DNA而进行转座的遗传元件。 组成型剪接:编码蛋白质的不连续基因通过RNA剪接将内含子从mRNA的前体中依次去除,然后将外显子剪接成成熟的mRNA,这种剪接方式一个基因只产生一种成熟的mRNA,一般只产生一种蛋白质。 可变剪接:(选择性剪切)指的是在mRNA前体到成熟mRNA的过程中,不同的剪切方式使得同一基因可以产生不同的成熟的mRNA,最终产生不同的蛋白质。 T-DNA插入:T-DNA是插入宿主细胞的一段DNA,通过农杆菌转化插入到一个随机的基因内可能导致该基因的失活。 端粒(telomene):是由特定的DNA序列和相关蛋白质组成的线性真核染色体末端结构,它具有防止末端基因降解,染色体末端的粘连,稳定染色体末端和精确复制等功能。 焦磷酸化编辑(pyrophosphorolytic editing):RNA聚合酶通过PPi的掺入去除错误加入的核苷酸,然后加入正常的核苷酸。 亮氨酸拉链:是由伸展的氨基酸组成,每7个氨基酸的第七个氨基酸为亮氨酸,亮氨酸是疏水性氨基酸,排列在α-螺旋的一侧,而所有带电的氨基酸残基排列在另一侧,当2个蛋白质平行排列时,亮氨酸之间相互作用形成二聚体,形成拉链。 全基因组选择:利用覆盖全基因组的高密度分子标记进行个体遗传评估,从而得到基因组估计的育种值。 开放阅读框(ORF):从起始密码子开始,是DNA序列中具有编码蛋白质潜能的序列,结束于终止密码子连续的碱基序列。一段DNA或RNA序列有多种不同的读取方式,可同时存在不同的ORF。

分子生物学(molecular biology)是从分子水平研究生命本质的一门新兴边缘学科。它以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为主要研究内容,是当前生命科学中发展最快并正在与其它学科广泛交叉与渗透的重要前沿领域。分子生物学的发展为人类认识生命现象带来了前所未有的机会,也为人类利用和改造生物创造了极为广阔的前景。学好分子生物学,掌握遗传信息的传递和表达机制,了解这门学科发展过程中重大发现的实验设计过程,学会运用基本的实验技术对遗传物质进行实验操作,对于培养和训练学生的研究性思维很有帮助。分子生物学是一门在分子水平上研究生命现象、生命本质、生命活动及其规律的学科。医学分子生物学(medical molecular biology)是分子生物学的一个重要分支,是从分子水平研究人体在正常和某些疾病状态下生命活动及其规律、从分子水平开展人类疾病的预防、诊断和治疗研究的科学。它主要研究人体生物大分子和大分子体系的结构、功能、相互作用及其同疾病发生、发展的关系。作为一门课程,医学分子生物学涵盖了医学各专业学生必须学习的分子生物学基础知识,以及分子生物学在医学领域中形成的专门研究领域及相关知识。这些基础知识将为医学各学科专业知识的学习、为将来了解各学科领域的研究进展奠定坚实的基础。分子生物学的理论与技术已在医学领域广泛应用。学习医学分子生物学这门课程,既要较系统地了解分子生物学的基础理论知识和技术理论知识,同时也要了解分子生物学在医学领域的应用和相关研究进展。

分子生物学是在分子水平上研究生命现象的科学。通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。下面是我为你整理的大学分子生物学知识点,一起来看看吧。

1、半保留复制:指新老搭配,由1条母代DNA链和1条子代DNA链配对产生自带双螺旋DNA。

2、冈崎片段:DNA复制时,1条链的合成方向和复制叉的前进方向相同,可以连续复制,这条链叫前导链,而另一条链的合成方向和复制叉的前进方向正好相反,不能连续复制,只能分成几个片段合成,故称为滞后链,滞后链片段又叫冈崎片段。

3、复制体:在DNA合成的生长点(growth point),即复制叉上,分布着各种各样与复制有关的酶和蛋白质因子,它们构成的复合物称复合体。

4、C值:是指某物种单倍体基因组的全部DNA含量的总和。不同物种的C值差异很大。

5、C值矛盾::①与预期相比,C 值明显过大;②同一物种,C 值相差很大。这种C值与生物进化复杂性不相对应的现象称为C值矛盾或C值悖理

6、启动子:是基因转录起始所必须的一段DNA序列,一般位于结构基因的上游,是DNA分子上与RNA聚合酶特异性结合而使转录起始的部位,启动子本身不被转录。

7、hnRNA: 在真核生物中,最初转录生成的RNA称为不均一核RNA(heterogeneous nuclear RNA,hnRNA),然而在细胞浆中起作用,作为蛋白质的氨基酸序列合成模板的是mRNA(messenger RNA)。hnRNA是mRNA的未成熟前体。两者之间的差别主要有两点:一是hnRNA核苷酸链中的一些片段将不出现于相应的mRNA中,这些片段称为内含子(intron),而那些保留于mRNA中的片段称为外显子(exon)。

8、转录:是以DNA中的一条单链为模板,游离碱基为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。

9、同功受体tRNA :转运同一种氨基酸的几种tRNA称为同功受体tRNA 。

10、操纵子:指包含结构基因、操纵基因以及调节基因的一些相邻基因组成的DNA片段,其中结构基因的表达受到操纵基因的调控。

11、SD序列:mRNA中用于结合原核生物核糖体的序列。

12、持家基因:又称管家基因,是指所有细胞中均要表达的一类基因,其产物是对维持细胞基本生命活动所必需的。

13、顺式作用组件:指对基因表达有调节活性的DNA序列,其活性只影响与其自身同处在一个DNA分子上的基因:这种DNA序列通常不编码蛋白质,多位于基因旁侧或内含子中。

14、反式作用因子:指能直接或间接地识别或结合在各类顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质。

15、同源重组:是指发生在非姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。

(又称为一般性重组它是由两条同源互补的DNA分子通过配对链的断裂和再连接而产生片段交换的过程)

16、转座子:就是基因组上不必借助于同源序列、也不需要重组酶就可移动的DNA片段,它们可以直接从基因组内的一个位点移到另一个位点,发生转座重组,从而改变染色体的结构。

17、遗传密码:指信使RNA(mRNA)分子上从5'端到3'端方向,由起始密码子AUG开始,每三个核苷酸组成的三联体。它决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号。

18、终止因子(termination factor):协助RNA聚合酶识别终止信号的辅助因子(蛋白质),称为终止因子。

19、转录单元:从启动子到终止子称为转录单元

蛋白质体系

蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。

蛋白质分子结构

蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。

分子生物学研究

蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。

随着结构分析技术的发展,1962年已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。

发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究很受重视。

蛋白质-核酸体系

生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×10^6碱基对。人体细胞染色体上所含DNA为3×10^9碱基对。

遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。

自考分子生物学知识框架图

组蛋白:是真核生物体细胞染色质和原核生物中的碱性蛋白质。组蛋白和DNA共同组成核小体结构,“核小体”是染色体的基本结构单位,一个核小体由两个组蛋白H2A,两个组蛋白H2B,两个组蛋白H3,两个组蛋白H4组成的八聚体和147bp缠绕在外面的DNA组成。 核心启动子(core promoter):是指在体外测定到的由RNApolyⅡ进行精确转录其实要求的一套DNA序列元件。 沉默子(sliencer):一种转录负调控元件,当其结合特定的蛋白因子时,对基因的转录起阻遏作用。 增强子(enhancer):该DNA 序列可增加与其连锁的基因的转录频率。 终止子(terminator):位于基因编码区下游,能够终止RNA转录合成的一段特殊DNA序列。 绝缘子(insulator):在基因组上建立独立转录活性结构域的边界DNA序列。能够阻止临近的增强子或沉默子对其界定的基因启动子发挥调控作用。 转座子(transpon):一段可以从原单位上单独复制或断裂下来,环化后插入另一位点,并对其后的基因起调控作用的DNA序列。 反转座子(retranspon):先转录成RNA然后再反转录为DNA而进行转座的遗传元件。 组成型剪接:编码蛋白质的不连续基因通过RNA剪接将内含子从mRNA的前体中依次去除,然后将外显子剪接成成熟的mRNA,这种剪接方式一个基因只产生一种成熟的mRNA,一般只产生一种蛋白质。 可变剪接:(选择性剪切)指的是在mRNA前体到成熟mRNA的过程中,不同的剪切方式使得同一基因可以产生不同的成熟的mRNA,最终产生不同的蛋白质。 T-DNA插入:T-DNA是插入宿主细胞的一段DNA,通过农杆菌转化插入到一个随机的基因内可能导致该基因的失活。 端粒(telomene):是由特定的DNA序列和相关蛋白质组成的线性真核染色体末端结构,它具有防止末端基因降解,染色体末端的粘连,稳定染色体末端和精确复制等功能。 焦磷酸化编辑(pyrophosphorolytic editing):RNA聚合酶通过PPi的掺入去除错误加入的核苷酸,然后加入正常的核苷酸。 亮氨酸拉链:是由伸展的氨基酸组成,每7个氨基酸的第七个氨基酸为亮氨酸,亮氨酸是疏水性氨基酸,排列在α-螺旋的一侧,而所有带电的氨基酸残基排列在另一侧,当2个蛋白质平行排列时,亮氨酸之间相互作用形成二聚体,形成拉链。 全基因组选择:利用覆盖全基因组的高密度分子标记进行个体遗传评估,从而得到基因组估计的育种值。 开放阅读框(ORF):从起始密码子开始,是DNA序列中具有编码蛋白质潜能的序列,结束于终止密码子连续的碱基序列。一段DNA或RNA序列有多种不同的读取方式,可同时存在不同的ORF。

分子生物学是在分子水平上研究生命现象的科学。通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。下面是我为你整理的大学分子生物学知识点,一起来看看吧。

1、半保留复制:指新老搭配,由1条母代DNA链和1条子代DNA链配对产生自带双螺旋DNA。

2、冈崎片段:DNA复制时,1条链的合成方向和复制叉的前进方向相同,可以连续复制,这条链叫前导链,而另一条链的合成方向和复制叉的前进方向正好相反,不能连续复制,只能分成几个片段合成,故称为滞后链,滞后链片段又叫冈崎片段。

3、复制体:在DNA合成的生长点(growth point),即复制叉上,分布着各种各样与复制有关的酶和蛋白质因子,它们构成的复合物称复合体。

4、C值:是指某物种单倍体基因组的全部DNA含量的总和。不同物种的C值差异很大。

5、C值矛盾::①与预期相比,C 值明显过大;②同一物种,C 值相差很大。这种C值与生物进化复杂性不相对应的现象称为C值矛盾或C值悖理

6、启动子:是基因转录起始所必须的一段DNA序列,一般位于结构基因的上游,是DNA分子上与RNA聚合酶特异性结合而使转录起始的部位,启动子本身不被转录。

7、hnRNA: 在真核生物中,最初转录生成的RNA称为不均一核RNA(heterogeneous nuclear RNA,hnRNA),然而在细胞浆中起作用,作为蛋白质的氨基酸序列合成模板的是mRNA(messenger RNA)。hnRNA是mRNA的未成熟前体。两者之间的差别主要有两点:一是hnRNA核苷酸链中的一些片段将不出现于相应的mRNA中,这些片段称为内含子(intron),而那些保留于mRNA中的片段称为外显子(exon)。

8、转录:是以DNA中的一条单链为模板,游离碱基为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。

9、同功受体tRNA :转运同一种氨基酸的几种tRNA称为同功受体tRNA 。

10、操纵子:指包含结构基因、操纵基因以及调节基因的一些相邻基因组成的DNA片段,其中结构基因的表达受到操纵基因的调控。

11、SD序列:mRNA中用于结合原核生物核糖体的序列。

12、持家基因:又称管家基因,是指所有细胞中均要表达的一类基因,其产物是对维持细胞基本生命活动所必需的。

13、顺式作用组件:指对基因表达有调节活性的DNA序列,其活性只影响与其自身同处在一个DNA分子上的基因:这种DNA序列通常不编码蛋白质,多位于基因旁侧或内含子中。

14、反式作用因子:指能直接或间接地识别或结合在各类顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质。

15、同源重组:是指发生在非姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。

(又称为一般性重组它是由两条同源互补的DNA分子通过配对链的断裂和再连接而产生片段交换的过程)

16、转座子:就是基因组上不必借助于同源序列、也不需要重组酶就可移动的DNA片段,它们可以直接从基因组内的一个位点移到另一个位点,发生转座重组,从而改变染色体的结构。

17、遗传密码:指信使RNA(mRNA)分子上从5'端到3'端方向,由起始密码子AUG开始,每三个核苷酸组成的三联体。它决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号。

18、终止因子(termination factor):协助RNA聚合酶识别终止信号的辅助因子(蛋白质),称为终止因子。

19、转录单元:从启动子到终止子称为转录单元

蛋白质体系

蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。

蛋白质分子结构

蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。

分子生物学研究

蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。

随着结构分析技术的发展,1962年已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。

发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究很受重视。

蛋白质-核酸体系

生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×10^6碱基对。人体细胞染色体上所含DNA为3×10^9碱基对。

遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。

自考分子生物学知识框架图片解析

分子生物学是在分子水平上研究生命现象的科学。通过研究生物大分子(核酸、蛋白质)的结构、功能和生物合成等方面来阐明各种生命现象的本质。下面是我为你整理的大学分子生物学知识点,一起来看看吧。

1、半保留复制:指新老搭配,由1条母代DNA链和1条子代DNA链配对产生自带双螺旋DNA。

2、冈崎片段:DNA复制时,1条链的合成方向和复制叉的前进方向相同,可以连续复制,这条链叫前导链,而另一条链的合成方向和复制叉的前进方向正好相反,不能连续复制,只能分成几个片段合成,故称为滞后链,滞后链片段又叫冈崎片段。

3、复制体:在DNA合成的生长点(growth point),即复制叉上,分布着各种各样与复制有关的酶和蛋白质因子,它们构成的复合物称复合体。

4、C值:是指某物种单倍体基因组的全部DNA含量的总和。不同物种的C值差异很大。

5、C值矛盾::①与预期相比,C 值明显过大;②同一物种,C 值相差很大。这种C值与生物进化复杂性不相对应的现象称为C值矛盾或C值悖理

6、启动子:是基因转录起始所必须的一段DNA序列,一般位于结构基因的上游,是DNA分子上与RNA聚合酶特异性结合而使转录起始的部位,启动子本身不被转录。

7、hnRNA: 在真核生物中,最初转录生成的RNA称为不均一核RNA(heterogeneous nuclear RNA,hnRNA),然而在细胞浆中起作用,作为蛋白质的氨基酸序列合成模板的是mRNA(messenger RNA)。hnRNA是mRNA的未成熟前体。两者之间的差别主要有两点:一是hnRNA核苷酸链中的一些片段将不出现于相应的mRNA中,这些片段称为内含子(intron),而那些保留于mRNA中的片段称为外显子(exon)。

8、转录:是以DNA中的一条单链为模板,游离碱基为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。

9、同功受体tRNA :转运同一种氨基酸的几种tRNA称为同功受体tRNA 。

10、操纵子:指包含结构基因、操纵基因以及调节基因的一些相邻基因组成的DNA片段,其中结构基因的表达受到操纵基因的调控。

11、SD序列:mRNA中用于结合原核生物核糖体的序列。

12、持家基因:又称管家基因,是指所有细胞中均要表达的一类基因,其产物是对维持细胞基本生命活动所必需的。

13、顺式作用组件:指对基因表达有调节活性的DNA序列,其活性只影响与其自身同处在一个DNA分子上的基因:这种DNA序列通常不编码蛋白质,多位于基因旁侧或内含子中。

14、反式作用因子:指能直接或间接地识别或结合在各类顺式作用元件核心序列上参与调控靶基因转录效率的蛋白质。

15、同源重组:是指发生在非姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。

(又称为一般性重组它是由两条同源互补的DNA分子通过配对链的断裂和再连接而产生片段交换的过程)

16、转座子:就是基因组上不必借助于同源序列、也不需要重组酶就可移动的DNA片段,它们可以直接从基因组内的一个位点移到另一个位点,发生转座重组,从而改变染色体的结构。

17、遗传密码:指信使RNA(mRNA)分子上从5'端到3'端方向,由起始密码子AUG开始,每三个核苷酸组成的三联体。它决定肽链上某一个氨基酸或蛋白质合成的起始、终止信号。

18、终止因子(termination factor):协助RNA聚合酶识别终止信号的辅助因子(蛋白质),称为终止因子。

19、转录单元:从启动子到终止子称为转录单元

蛋白质体系

蛋白质的结构单位是α-氨基酸。常见的氨基酸共20种。它们以不同的顺序排列可以为生命世界提供天文数字的各种各样的蛋白质。

蛋白质分子结构

蛋白质分子结构的组织形式可分为 4个主要的层次。一级结构,也叫化学结构,是分子中氨基酸的排列顺序。首尾相连的氨基酸通过氨基与羧基的缩合形成链状结构,称为肽链。肽链主链原子的局部空间排列为二级结构。二级结构在空间的各种盘绕和卷曲为三级结构。有些蛋白质分子是由相同的或不同的亚单位组装成的,亚单位间的相互关系叫四级结构。

分子生物学研究

蛋白质的特殊性质和生理功能与其分子的特定结构有着密切的关系,这是形形色色的蛋白质所以能表现出丰富多彩的生命活动的分子基础。研究蛋白质的结构与功能的关系是分子生物学研究的一个重要内容。

随着结构分析技术的发展,1962年已有几千个蛋白质的化学结构和几百个蛋白质的立体结构得到了阐明。70年代末以来,采用测定互补DNA顺序反推蛋白质化学结构的方法,不仅提高了分析效率,而且使一些氨基酸序列分析条件不易得到满足的蛋白质化学结构分析得以实现。

发现和鉴定具有新功能的蛋白质,仍是蛋白质研究的内容。例如与基因调控和高级神经活动有关的蛋白质的研究很受重视。

蛋白质-核酸体系

生物体的遗传特征主要由核酸决定。绝大多数生物的基因都由 DNA构成。简单的病毒,如λ噬菌体的基因组是由 46000个核苷酸按一定顺序组成的一条双股DNA(由于是双股DNA,通常以碱基对计算其长度)。细菌,如大肠杆菌的基因组,含4×10^6碱基对。人体细胞染色体上所含DNA为3×10^9碱基对。

遗传信息要在子代的生命活动中表现出来,需要通过复制、转录和转译。复制是以亲代 DNA为模板合成子代DNA分子。转录是根据DNA的核苷酸序列决定一类RNA分子中的核苷酸序列;后者又进一步决定蛋白质分子中氨基酸的序列,就是转译。因为这一类RNA起着信息传递作用,故称信使核糖核酸(mRNA)。由于构成RNA的核苷酸是4种,而蛋白质中却有20种氨基酸,它们的对应关系是由mRNA分子中以一定顺序相连的 3个核苷酸来决定一种氨基酸,这就是三联体遗传密码。

612生物化学与分子生物学 (中国科学院大学命题) 考试大纲 《生物化学》(2002年第三版),上、下册 高等教育出版社 王镜岩等编著《基因VIII》(中文版) 科学出版社 Benjamin Lewin852细胞生物学 (中国科学院大学命题) 考试大纲《细胞生物学》(2000年,第1版)高等教育出版社翟中和,王喜忠,丁明孝《细胞生物学》(2002年,第1版)高等教育出版社刘凌云,薛绍白,柳惠图847生理学 (中国科学院大学命题) 考试大纲《生理学》第六版

《分子生物学》考试大纲一、考试科目名称:《分子生物学》二、考试方式: 闭卷三、考试时间:120分钟四、试卷结构:总分100分,选择题15分(单项选择5个小题共5分;多项选择5个小题共10分),判断题12分(6个小题共12分)、名词解释题15分(共5个小题),简答题42分(共6个),论述题16分(共1个)。五、参考书目《分子生物学》(第2版),郑用琏,高教出版社,2012.02《分子生物学实验》(第1版),吴建祥,李桂新,浙江大学出版社,2014.07六、考试的基本要求分子生物学主要从生物大分子的水平尤其是核酸水平来阐述生命现象和规律,内容包括核酸分子的分子结构、遗传信息的传递(DNA复制和突变修复等)、基因表达(DNA→RNA→Pr)、表达调控、基因重组及分子生物学技术等。本课程主要考察学生对分子生物学基本知识的理解和掌握程度及本学科知识在生命科学研究体系中的重要作用。七、考试范围第1章 绪论1、分子生物学的概念2、分子生物学的研究内容第2章 基因的概念与结构1、名词解释:核小体、C值、C值矛盾、Tm值、C0t(1/2)值、卫星DNA、Alu序列、转座、转座子、断裂基因、外显子、内含子、重叠基因、拓扑异构酶、Hoogsteen氢键2、DNA双螺旋结构的特点及影响稳定性因素

自考分子生物学知识框架图解视频

江苏自考生物教育本科考试内容是什么?

该专业的主考院校为江苏第二师范学院,一共需要考22门课程(含选修课),分别为:马克思主义基本原理概论、中国近现代史纲要、英语(二)、计算机应用基础(实践)、计算机应用基础、生态学概论、生态学概论(实践)、细胞生物学(实践)、细胞生物学、生物教育学、生物统计学、进化生物学、分子生物学、中学生物学实验教学研究(实践)、中学生物学实验教学研究、计算机辅助生物学教学(实践)、计算机辅助生物学教学、动物生理学、中国文化概论、基础教育概论、生物教育教育实习、生物教育毕业论文。

免费领取自考学习资料、知识地图:

自考生物工程要考15科,分别为马克思主义基本原理概论、物理化学(二)、物理化学(二)(实践)、分子生物学、发酵工艺学、微生物遗传与育种、生化工程、生物制药学、生物工程综合实验、生物工程综合实习、毕业论文、高等数学(工本)、管理学原理、生物化学(二)、中国近现代史纲要、英语(二)。生物工程专业就业方向生物技术是个有前途的专业,我想大家首先要有这个共识和信心,这也是公众对这个专业的评价。21世纪是生物世纪,也许大家会说这个时间还得等待20年,是的,但我想说有希望才有出路啊,机会面前人人平等,就看你能不能自己创造和抓住机会了,他只属于那些勤奋的人。生物技术专业就业方向一:可以瞄准一些生物制药厂和做疫苗的公司,现在社会上外资和医院附属的制药厂比较多,做疫苗的公司也不少,不防一试,虽说不是专门学生物制药的,但是基础知识你都有,不足的可以在岗位上学,要注意的是你面试时对这个公司的背景、产品和专业知识等要有充足的准备,还要有个思想准备:你会受到生物制药专业毕业生的挑战。生物技术专业就业方向二:可以瞄准一些畜牧兽医站、养殖场和相关单位等等,当然同样要受到畜牧兽医专业毕业生的挑战。生物技术专业就业方向三:可以瞄准一些植物所、公园、苗木园、园艺场、种苗公司等,当然也会受到园艺园林、植保等专业的冲击。生物技术专业就业方向四:自主创业:有毅力的和实力的可以自主创业,比如做疫苗,搞经济动物养殖,搞苗木等。自考/专升本有疑问、不知道自考/专升本考点内容、不清楚当地自考/专升本考试政策,点击底部咨询官网,免费获取个人学历提升方案:

自考分子生物学知识框架图解高中

高中生物会考知识点 一、生物的基本特征 : (生物与非生物的本质区别) 1 、具有共同的物质基础和结构基础. 物质基础是构成细胞的各种化学元素和化合物. 生物结构和功能的基本单位是细胞(病毒没有细胞 ) . 病毒也有一定的结构即病毒结构. 2 、都有新陈代谢.新陈代谢是一切生命活动的基础,是生物最基本的特征. 3 、都有应激性. 生物对外界刺激能发生一定的反应.如:根的向地性,蝶白天活动,利用黑光灯捕虫. 4 、都有生长、发育、繁殖现象.意义:保证种族延续,即物种不会灭绝的原因. 5 、都有遗传和变异.意义:遗传使物种保持稳定,变异使物种进化. 6 、都能适应一定的环境,又能影响环境 . (这是自然选择的结果) 二、 生物学发展的三个阶段及标志: ( 1 ) 描述性生物学阶段 标志:达尔文进化论的提出 ( 2 ) 实验生物学阶段 标志:孟德尔遗传规律的提出 ( 3 ) 分子生物学阶段 标志: DNA 双螺旋结构的提出 第一章 生命的物质基础 6 ~ 8 % 一、组成生物体的大量元素和微量元素及其重要作用 1 、大量元素: C H O N P S K Ca Mg 其中 C( 最基本 ) C H O N( 基本元素 ) C H O N P S( 主要元素 ) 2 、微量元素:生物体必需,但需要量很少元素. Fe 、 Mn 、 B 、 Zn 、 Mo 、 Cu ( 铁猛碰新木桶 ) 植物缺少 B (元素)时花药花丝萎缩,花粉发育不良 . (花而不实) 3 、统一性:构成生物体的元素在无机自然界都可以找到,没有一种是生物所特有的. 差异性:组成生物体的元素在生物体体内和无机自然界中的含量相差很大. 构成细胞的化合物 1 、水是一切活细胞中含量最多的化合物. 2 、蛋白质是一切活细胞含量最多的是有机物,在干细胞中含量最多. 水在细胞中存在的形式及水对生物的意义 1 、存在的形式:结合水和自由水 2 、自由水功能: ① 良好的溶剂 ② 运送营养物质和代谢废物 ③ 参与生化反应 无机盐离子及其对生物的重要性 1 、细胞中某些复杂化合物的重要组成成分.如: Fe 2+ 是血红蛋白的主要成分; Mg 2+ 是叶绿素的必要成分. 2 、维持细胞的生命活动.如人和哺乳动物血液钙含量低会抽搐. 动、植物体内重要糖类、脂质及其作用 1 、糖类 —— 主要能源物质 A 、元素: C 、 H 、 O B 、种类: ① 单糖:葡萄糖(重要能源 ) 、果糖、核糖和脱氧核糖(构成核酸 ) 、半乳糖 ② 二糖:蔗糖、麦芽糖(植物 ) ; 乳糖(动物) ③ 多糖:淀粉、纤维素(植物 ) ; 糖元(动物) C 、五大能源 : ① 重要能源: 葡萄糖 ② 主要能源: 糖类 ③ 直接能源: ATP ④ 根本能源: 阳光 ⑤ 主要储能物质:脂肪 2 、脂质 A 、元素: C 、 H 、 O 构成,有些含有 N 、 P

一、真核基因组的结构特点:

1.编码序列所占比例远小于非编码序列。

2.高等真核生物基因组含有大量的重复序列。

3.存在多基因家族和假基因。

4.基因通过可变前接能改变蛋白质的序列。

5.真核基因组DNA与蛋白质结合形成染色体。

二、半保留复制的概念。

1.DNA复制时除代DNA双螺旋解开成为两条单链。

2.自作为模板按照碱基配对规律合成-条与模板相互补的新链,形成两个子代DNA分子。

3.每一个子代DNA分子中都保留有一条来自亲代的链。

三、半不连续复制。

1.DNA双螺旋结构中两股单链反向互补平行,一股链的方向为5' →3',另一股链的方向为3'→5'。

2.复制时合成的互补链方向则对应为3'→5和5'→3' ,而生物体内DNA的合成方向只能是5'→3’。

3.复制时,顺着解链方向生成的一股子链其合成方向与解链方向相同,合成能连续进行,称为前导链。

4.而另一股子链的合成方向与解链方向相反,它必须等待模板链解开至一定长度后 才能合成一段 ,然后又等待下一段模板暴露出来再合成合成是不连续进行的,称为后随链。

5.这种前导链连续复制而后随链不连续复制的方式称为半不连续复制。在复制中不连续合成的DNA片段称为冈崎片段。

四、真核生物的DNA聚合酶a、β、γ、δ、ε。

1.DNA聚合酶δ是复制中最重要的酶,主要负责子链的延长,相当于原核生物的DNA聚合酶Ⅲ。

2.DNA聚合酶a主要催化合成引物。

3.聚合酶β、ε参与染色体DNA的损伤修复。

4.聚合γ复制线粒体DNA。

五、DNA复制是如何实现高保真性的。

生物体至少有3种机制实现复制保真性:

①严格遵守碱基配对规律:A-T配对,G-C 配对。

②聚合酶在复制延长中对碱基的选择功能:原核生物DNA pol Ⅲ对嘌呤不同构型表现不同亲和力,从而实现其选择功能。

③复制出错时有即时校对功能:在复制过程中一旦DNA新生链3'端出现与模板错误配对的碱基时,DNA聚合酶I即能迅速识别,并利用3'→5'核酸外切酶活性切除错配的核苷酸,然后再通过其5’→3’聚合酶活性连接正确配对的核苷酸。此过程称错修复。

六、原核生物复制中参与DNA解链的相关蛋白。

解链过程主要由DnaA、B、C三种蛋白质共同参与。还有DnaG、SSB、拓扑异构酶。

1.DnaA蛋白辨认并结合于串联重复序列上(AT区),几个DnaA蛋白相互靠近形成DNA蛋白质复合体结构,可促使AT区的DNA进行解链。

2.DnaB蛋白(解旋酶)在DnaC蛋白协同下,结合并沿解链方向移动,解开双链,并置换出DnaA,初步形成复制叉。

3.解链的同时SSB结合在解开的单链上,保护单链模板。

4.DnaG(引物酶):催化RNA引物生成。

5.在解链过程中由拓扑酶来理顺DNA链。DNA拓扑异构酶II把DNA由正超螺旋变为负超螺旋,更好地起模板作用。

七、逆转录酶的三大活性。

1.RNA指导的DNA聚合酶活性。

2.DNA指导的DNA聚合酶活性。

3.RNase H 活性,作用需Zn²+为辅助因子。

八、从单链RNA到双链DNA的生成可分为三步。

1.逆转录酶以病毒基因组RNA为模板,催化dNTP聚合生成DNA互补链,产物是RNA/DNA杂化双链。

2.杂化双链中的RNA被逆转录酶中有RNase活性的组分水解,被感染细胞内的RNase H也可水解RNA链。

3.RNA分解后剩下的单链DNA再用作模板,由逆转录酶催化合成第二条DNA互补链。

九、重组修复。

当DNA双链断裂时,需要重组修复。重组修复是指在重组酶系的作用下,将另一段未受损伤的DNA移到损伤部位,提供正确的模板,进行修复的过程。“边修复,边复制”。

1.同源重组修复:参加重组的两段双链DNA在大于200bp的范围内序列相同,修复后的序列正确。大肠杆菌和酵母在同源重组修复中起关键作用的是ReoA蛋白。

2.非同源末端连接的重组修复:参加重组的两段双链DNA同源性低,修复后的序列中可存在错误,修复不精确。此方式是哺乳动物细胞DNA双链断裂的一种修复方式,起关键作用的是DNA依赖的蛋白激酶(DNA-PK)和XRCC4。

十、简述原核生物的转录终止方式。

①依赖p因子的转录终止:p因子是一种蛋白质。当核心酶移动到终止子时,p因子与其结合并发挥解旋酶活性,解开DNA-RNA杂合双链,使新合成的RNA从模板链上脱落下来,转录终止。

②非依赖p因子的转录终止:核心酶沿模板移动到DNA的终止子序列时,按照该序列转录合成的RNA有两个特征:富含GC碱基对的发夹结构和一串U序列。

发夹结构可影响RNA与模板链的结合,并阻止核心酶前进;U序列则进一步降低RNA与模板链的结合力,从而使转录合成的RNA与模板链分离。随后核心酶与双链DNA解离,转录终止。

  •   索引序列
  •   自考分子生物学知识框架图解
  •   自考分子生物学知识框架图
  •   自考分子生物学知识框架图片解析
  •   自考分子生物学知识框架图解视频
  •   自考分子生物学知识框架图解高中
  •   返回顶部

自考地区