自考问答 自考本科自考百科
  • 回答数

    5

  • 浏览数

    200

鑫宝贝66
自考问答 > 自考本科 > 电子技术基础自考重点归纳

5个回答 默认排序
  • 默认排序
  • 按时间排序

艾米tiantian

已采纳

第1章 电路的基本概念及基本定律 电路剖析 基础是高职、高专电类各专业的一门专业技术基础课程。《电路剖析 基础》论述 了电路的基本概念、基本定理及其基本剖析 办法 ,是从事任何电类专业学习和职业 的人员普遍要学习和掌握的、必不可少的知识。本章引见 的内容是贯串 全书的基本理论基础,门槛 在学习中给予足够的注重 。本章的学习重点:l 电路模型的概念和理想电路元件的概念;l 电压、电流参考方向的概念及其与实践 方向之间的联络 ,电功率的概念;l 理想的无源元件、有源元件的概念;l 基尔霍夫电流、电压定律的深入 了解 和使用 ;l 电路“等效”概念的树立 及其电路“等效”的基本办法 ;l 直流电路中电位的计算及其负载上取得 最大功率的要求 。1.1 电路和电路模型 1、学习指点 (1)电路的组成和功用 电路通常由电源、负载、中间环节三大局部 组成。电路分有两品种 型:电力系统的电路功用 是完成 电能的传输、分配和转换;电子技术的电路功用 是对电信号进行传递、变换、贮存 和处置 。(2)电路模型电路理论是树立 在一种迷信 的笼统 ——“电路模型”的概念和基础上进行论述 的。所谓电路模型,实践 上是由一些理想电路元件构成的、与实践 电路相对应的电路图。对工程实践 难题 进行剖析 和研究时,我们往往在一个实践 电路给定的状况 下,首先对该电路进行模型化处置 ,并使模型电路的性状和实践 电路的性状基本相同或非常 迫近 ,然后借助于这种理想化的电路模型,对实践 电路的难题 进行剖析 和研究。利用电路模型剖析 和研究实践 电路是一种迷信 的思想 办法 ,也是工程技术人员应具有 的业务素质之一。(3)理想电路元件理想电路元件是电路模型中不可再联系 的基本结构 单元并具有准确 的数学定义。理想电路元件也是一种迷信 的笼统 ,可以用来表征实践 电路中的各种电磁性质。例如“电阻元件”表征了电路中耗费 电能的电磁特性;“电感元件”表征了电路中贮存 磁场能量的电磁特性;“电容”元件则表征了电路中贮存 电场能量的电磁特性。实践 电路中的实体部件上发生的电磁景象 往往是复杂的、多元的,如电阻器、电炉等设备,它们除了具有耗费 电能的特性外,还有磁场和电场方面的特性,剖析 时若把它们的全部电磁特性都表征出来既有困难也不用 要。本着突出主要矛盾、疏忽 将要要素 的研究办法 ,电阻器和电炉等设备完全可以用理想的“电阻元件”来作为它们的数学模型。显然,理想电路元件是从实践 电路器件中迷信 笼统 出来的假想元件,可以看作是实践 电路器件的一种“近似”。理想电路元件简称为电路元件。虽然它们只能是实践 电路器件的一种近似,但用它们及它们的组合可以相当准确 地表征出实体电路器件的主要电磁特性。如工频要求 下的电感线圈,其电路模型就可以用一个“电阻元件”和一个“电感元件”的串联组合来表征;一个实践 的直流电压源的电路模型则可以用一个“电阻元件”和一个“理想电压源”的串联组合来表征等等。学习时留意 了解 各种理想电路元件的严格定义,区分实践 电路元器件与理想电路元件之间的联络 和差异 。教学材料 中如无特殊阐明 时,留意 各理想电路元件都是指线性元件。2、检验学习结果解析(1)电路由哪几局部 组成,各局部 的作用是什么?解析:电路通常 由电源、负载和中间环节三大局部 组成。电源是电路中提供电能的安装 ,其作用是将其它方式 的能量转换成电能;负载是电路中接纳 电能的安装 ,其作用是将电能转换成其它方式 的能量;中间环节包括衔接 导线、开关及控制维护 设备及测量机构,它们是电源和负载之间不可缺少的衔接 和控制部件,起着传输和分配能量、控制和维护 电气设备的作用。(2)试述电路的分类及功用 。解析:工程使用 中的实践 电路,依照 功用 的不同可概括为两大类:①电力系统中的电路:特点是大功率、大电流。其主要功用 是对发电厂发出的电能进行传输、分配和转换。②电子技术中的电路:特点是小功率、小电流。其主要功用 是完成 对电信号的传递、变换、贮存 和处置 。(3)何谓理想电路元件?如何了解 “理想”二字在实践 电路中的含义?何谓电路模型?解析:理想电路元件是从实践 电路器件中迷信 笼统 出来的假想元件,由严格的定义来准确 地加以论述 、理想电路元件是具有单一电磁特性的复杂 电路模型单元。电路理论中研究的都是由理想元件构成的、与工程使用 中的实践 电路相对应的电路模型。在实践 的电路中,“理想”电路元件是不存在的。白炽灯、电炉等设备,只所以在研究它们时可以把它们作为一个“理想”的电阻元件进行剖析 和研究,缘由 就是它们在实践 电路中表现的主要电磁特性是耗能,其他 电磁特性与耗能的电特性相比可以疏忽 ;工频电路中的电感线圈只所以用一个电阻元件和一个电感元件的串联组合来表征,缘由 就是:在工频状况 下,电感线圈的主要电磁特性就是线圈的耗能和贮存 磁场能量,其他 电磁特性可以疏忽 。从以上剖析 可以把“理想”二字在实践 电路中的含义解释为:“理想”就是一种与实践 电路部件特性的“基本相似”或“迫近 ”。采用“理想”化模型剖析 实践 难题 ,就是抓住实践 电路中的主要矛盾,疏忽 其中的次要要素 ,预测出实践 电路的性状,从而依据 人们的需要设计出更好的各种电路。电路理论是树立 在模型概念的基础上的,用理想化的电路模型来描绘 电路是一种非常 重要的研究办法 。由理想电路元件构成的、与实践 电路相对应的电路图称为电路模型。4.你能阐明 集总参数元件的特征吗?你如何在电路中区分电源和负载?解析:集总参数元件的特征就是:在元件中所发生的电磁进程 都集中在元件内部进行,其次要要素 可以疏忽 的理想化电路元件。关于 集总参数元件,任何时辰 从元件一端流入的电流,恒等于从元件另一端流出的电流,并且元件两端的电压值是完全确定的。在电路中区分电源和负载的办法 ,通常 是依据 计算的结果来看:若元件发出功率(即元件两端电压与经过 元件的电流的实践 方向为非关联方向),阐明 元件是电源;若元件吸收功率(即元件两端电压与经过 元件的电流的实践 方向为关联方向),阐明 元件是负载。在计算前通常 要依据 元件两端电压和经过 元件中的电流的参考方向来假定,当电路模型中所标示的电压、电流为非关联参考方向时,应按电源处置 ,若电路模型中标示的电压、电流为并联参考方向时,就要按负载处置 ,而确定元件的真实性质则要依据 剖析 计算的结果来定。1.2 电路的基本物理量 1、学习指点 (1)基本电量虽然我们在中学曾经 从物理概念上接触过电压、电流、电动势、电功率这些电量,但在本章的学习中,我们要从工程使用 的角度上重新了解 电压、电流、电动势、电功率这些电量的概念,并把它们与参考方向联络 在一同 加以了解 。在电路剖析 中,电压就是电路中两点电位之差,是发生 电流的基本 缘由 ;电流经过 电路元件时,必定 发生 能量转换;电动势只存在于电源内部,其大小反映了有源元件能量转换的身手 。(2)电功和电功率电流所做的功就是电功,日常生活中电度功就是电功,因而 电功的单位除了焦耳还有KW·h(度);电功率则反映了设备能量转换的身手 。如电气设备上标示的额定电功率,表征了该设备自身 能量转换的身手 :100W表示该设备在1s时间内可以把100J的电能转换成其它方式 的能量,40W表示设备在1s时间内可以把40J的电能转换成其它方式 的能量。(3)参考方向参考方向是电路剖析 进程 中人们假定的电压、电流方向,准绳 上可以恣意 假定,习气 上若假定一个电路元件是负载时,就把这个元件两端的电压与经过 这个元件上的电流的参考方向设立为“关联方向”,所谓关联方向就是电流流入端为电压的高极性端,电流的流出端是电压的低极性端,关联方向下元件吸收功率;假如 假定某电路元件是电源,就把该元件上的电压、电流参考方向设为“非关联方向”,非关联就是电流由电压低极性端流入,由电压高极性端流出的参考方向,非关联方向下元件发出功率。(4)参考方向和实践 方向正电荷挪动 的方向规则 为电流的实践 方向;电路中两点从高到低的方向规则 为电压的实践 方向。有了实践 方向为什么还要引入参考方向,它们之间有什么样的差异 和联络 ,这是学习时必需 首先要搞清楚的难题 。电压、电流的实践 方向即指它们的真实方向,是客观存在;参考方向则是指电路图上标示的电压、电流的箭头方向,是人为恣意 假定的。剖析 和计算电路时,经常 无法正确判别 出电压、电流的真实方向,因而 依照 人们的主观想象,在电路图中标出一个假定的电压、电流方向,这就是参考方向。电路图中的参考方向一但标定,在整个电路剖析 计算进程 中就不容改动 。参考方向提供了电压、电流方程式中各量前面正、负号确定的根据 。对方程求解的结果,若电压、电流得正值,阐明 标定的电压、电流参考方向与电压、电流的实践 方向相符;若方程求解的结果是负值,则阐明 假定的参考方向与实践 方向相反。电路剖析 和计算中,参考方向的概念非常 重要,假如 在计算电路时不标示电压、电流的参考方向,显然,方程式中各量的正、负就无法确定。本章强调了电路响应的“参考方向”在电路剖析 中的重要性。2、检验学习结果解析(1)如图1.3(a)所示,若已知元件吸收功率为-20 W,电压U=5V,求电流I。+-UI(a)关联参考方向-+UI(b)非关联参考方向图1.3 电压、电流参考方向元件元件解析:图1.3(a)中元件两端的电压、电流为关联参考方向,显然是假想为一个负载。关联参考方向下 A电流得负值,阐明 经过 元件中的电流的实践 方向与参考方向相反,因而 该元件实践 上是一个电源。(2)如图1.3(b)所示,若已知元件中经过 的电流I=-100A,元件两端电压U=10V,求电功率P,并阐明 该元件是吸收功率还是发出功率。解析:图1.3(b)中元件上的电压与电流为非关联参考方向,在非关联参考方向下显然是把元件假想为一个电源,因而 元件发出的功率为 W元件发出负功率,实践 上是吸收功率,因而 图1.3(b)中元件实践 上是一个负载。(3)电压、电位、电动势有何异同?解析:电压、电位和电动势三者定义式的表达方式 相同,因而 它们的单位相同,都是伏特【V】;电压和电位是反映电场力作功用 力的物理量,电动势则是反映电源力作功用 力的物理量;电压和电位既可以存在于电源外部,还可以存在于电源两端,而电动势只存在于电源内部;电压的大小仅取决于电路中两点电位的差值,因而 是肯定 的量,其方向由电位高的一点指向电位低的一点,因而 也常把电压称为电压降;电位只要 高、低、正、负之分,没有方向而言,其高、低、正、负均相关于 电路中的参考点,因而 电位是相对的量;电动势的方向由电源负极指向电源正极。(4)电功率大的用电器,电功也一定大。这种说法正确吗?为什么?解析:用电器铭牌上标示的电功率P的大小,反映了用电器能量转换的身手 ,是从制造厂出来就确定了的;电功W的大小则是反映了用电器实践 耗能的多少,由于 W=Pt,显然电功的大小与用电时间的长短有关。电功率再大的用电器,假如 没有与电源接通,即t=0时,电功W=Pt=0。所以,电功率大的用电器,电功也一定大的说法是错误的。(5)在电路剖析 中,引入参考方向的目的是什么?使用 参考方向时,会遇到“正、负,加、减,相同、相反”这几对词,你能阐明 它们的不同之处吗?解析:电路剖析 中之所以引入参考方向,目的是给剖析 和计算电路提供方便和根据 。使用 参考方向时遇到的“正、负”,是指在参考方向下,电压和电流的数值前面的正、负号,若参考方向下一个电流为“-2A”,阐明 它的实践 方向与参考方向相反,参考方向下一个电压为“+20V”,阐明 该电压的实践 方向与参考方向一致;“加、减”是指在参考方向下列写电路方程式时各量前面的正、负号;“相同、相反”则是指电压、电流能否 为关联参考方向,电压、电流参考方向“相同”是指二者为关联参考方向,即电流流入端为电压的高极性端;“相反”是指电压、电流为非关联参考方向,即电流由电压的低极性一端流入。1.3基尔霍夫定律 1、学习指点 (1)欧姆定律和基尔霍夫定律欧姆定律和基尔霍夫电流定律、基尔霍夫电压定律统称为电路的三大基本定律,它们反映了电路中的两种不同约束。欧姆定律论述 和处理 的是某一元件关于 电路基本变量(即元件两端电压与经过 元件的电流)的约束关系;而基尔霍夫两定律论述 和处理 的是电路元件互联后,电路的全体 构造 对电路基本变量(回路中的电压和结点上的电流)的约束关系,在学习中应把这两种不同的约束关系加以区别。(2)集总参数电路学习电路基本定律时要留意 它们的适用范围:仅限于对集总参数电路的剖析 。所谓的集总参数电路是指:电路中的电磁能量只贮存 和耗费 在元件上,并且各元件间是用无阻、无感的理想导线相衔接 ,导线与电路各局部 之间的电容也都可以疏忽 的电路。换句话说,只需 电路的尺寸远小于电路中最高频率所对应的波长,不论 其衔接 方式如何,都可以称为集总参数电路。(3)基尔霍夫定律基尔霍夫第一定律也称为结点电流定律,它处理 了聚集 到电路结点上各条支路电流的约束关系:对电路的恣意 结点而言,流入结点的电流的代数和恒等于零。此规律在规则 流入结点的电流和流出结点的电流正、负取值不同时成立。基尔霍夫第二定律也称为回路电压定律,它处理 了一个回路中一切 元件上电压降的相互约束关系:对电路的恣意 回路而言,绕回路一周,一切 元件上电压降的代数和恒等于电路的电压升。此规律在标定了回路绕行方向后、并规则 电压降或回路电压升和绕行方向一致时取正、否则取负时成立。2、检验学习结果解析(1)你能从了解 的角度上来阐明 什么是支路、回路、结点和网孔吗?解析:支路就是指联接在电路中两点之间的一段无分岔电路,且这段无分岔电路中可能是一个也可能是几个元件相串联,但串联各元件中经过 的电流相同;回路是指电路中的任何一个闭合途径 ;三条或三条以上支路的聚集 点称为结点;网孔则是平面电路图上内部不包括 支路的闭合途径 。(2)你能阐明 欧姆定律和基尔霍夫定律在电路的约束上有什么不同吗?解析:欧姆定律反映的是线性电阻元件特性对元件自身 电压、电流的约束;基尔霍夫定律反映的是元件之间联接时给支路上电压与电流形成 的约束。因而 ,在利用欧姆定律时,我们只需思索 元件自身 的特点而不用 要思索 元件之间的关系;当我们利用基尔霍夫定律时,我们思索 的则是元件之间的联络 或电路的全体 构造 ,不需要思索 元件自身 的特性。(3)在使用 KCL定律解题时,为什么要首先商定 流入、流出结点的电流的参考方向?计算结果电流为负值阐明 了什么难题 ?解析:使用 KCL定律解题时,首先假定和标示出聚集 到结点上的各支路电流的参考方向,才能依据 这些参考方向确定电流方程中各电流前面的正、负号;计算结果电流为负值,则阐明 电路图上标示的电流参考方向与该电流的实践 方向相反。(4)使用 KCL和KVL定律解题时,为什么要在电路图上先标示出电流的参考方向及事前 给出回路中的参考绕行方向?解析:在电路图上事前 标示出电流的参考方向及事前 给出回路中的参考绕行方向是为了给列写的方程式提供其中各项的正、负取值。(5)KCL和KVL的推行 使用 你是如何了解 和掌握的?解析:KCL的推行 首先要掌握电路中哪些局部 可以做为广义结点,KVL的推行 则要掌握住电路中哪些局部 可以做为假想回路。其他 略。1.4 电压源和电流源 1、学习指点 (1)理想电压源理想电压源简称电压源,由于它向外供出的电压值恒定,因而 也称为恒压源。留意 恒压源上经过 的电流值是由它和外电路共同决议 的。另外恒压源属于无穷大功率源,实践 中不存在。(2)理想电流源理想电流源简称电流源,由于它向外供出的电流值恒定,也常称为恒流源。留意 恒流源两端的电压是由它和外电路共同决议 的。理想电流源也是无穷大功率源。学习时应掌握两种理想电源的基本性质和特点,剖析 时可借助伏安特性将两种电源进行对比,从而加深了解 。(3)两种电源模型在看法 了理想电源的基础上,找出实践 电源与理想电源之间的区别与联络 。实践 电压源总是存在内阻的,而我们希望电压源的内阻越小越好,这样向外电路提供的电压值就会基本固定 ,当实践 电源的内阻等于0时就成为理想电压源。实践 电流源的内阻总是有限值,而我们希望实践 当中电流源的内阻越大越好,这样它输入 的电流就越固定 ,当实践 电流源的内阻无穷大时就成为理想电流源。2、检验学习结果解析(1)理想电压源和理想电流源各有何特点?它们与实践 电源的区别主要在哪里?解析:实践 电压源总是存在内阻的,在电路剖析 中实践 电压源是用一个理想电压源和一个电阻元件的串联组合来表征的。因而 电源内阻越大分压越多,对外供出的电压就越小。我们总是希望实践 电压源的内阻越小越好,当内阻为零时就成为理想电压源。理想电压源由于不存在内阻上的分压难题 ,因而 输入 的电压值恒定,但经过 理想电压源的电流则由它和外电路共同决议 ;实践 的电流源也总是存在内阻的,实践 电流源通常 用一个理想电流源和一个电阻元件相并联作为它的电路模型,并联电阻可以分流,因而 电源内阻越小分流就越多,对外供出的电流就越小。我们希望实践 电流源的内阻越大越好,当实践 电流源的内阻为无穷大时,就成为一个理想的电流源。理想电流源由于内阻无穷大而不存在分流难题 ,因而 输入 的电流值恒定,但理想电流源两端电压则要由它和外电路共同决议 。(2)碳精送话器的电阻随声响 的强弱变化,当电阻阻值由300Ω变至200Ω时,假定 由3V的理想电压源对它供电,电流变化多少?解析:送入碳精送话器中的声响 越强,其电阻越小,电流就越大,当电阻辨别 为300Ω、200Ω时,电流辨别 为 A和 A。由计算结果标明 ,在3V理想电压源对它供电的状况 下,电流在0.01A~0.015A之间变化。图1.13 实践 电源的两种电路模型(a)电压源模型Ri+US-RUIS(b)电流源模型(3)实践 电源的电路模型如图1.13(a)所示,已知US=20V,负载电阻RL=50Ω,当电源内阻辨别 为0.2Ω和30Ω时,流过负载的电流各为多少?由计算结果可阐明 什么难题 ?解析:当RU′=0.2Ω时, A; 当RU″=30Ω时, A。由计算结果可知,实践 电压源的内阻越小越好。内阻太大时,电源内阻上分压过多,致使对外供出的电压过低,从而形成 电源利用率不充沛 。(4)当电流源内阻很小时,对电路有何影响?解析:电流源的内阻和负载是并联关系,并联可以分流。因而 当电流源内阻较小时,它分配到内阻上的电流就会较大,从而形成 分配给外电路负载的电流相应较小,由此不只 使电源的利用率太低,还会形成 内阻过热而不利于电源。1.5 电路的等效变换 1、学习指点 (1)电阻等效本章初步接触到了电路 “等效” 的难题 ,电路等效是贯串 电路剖析 基础全课程的一条主线。学习时应深入 体会 电路的“等效”概念:等效是指对等效变换之外的电路局部 效果相同,对等效变换的电路局部 效果通常 不相同。电阻等效关键在于正确找结点,确定各电阻之间的串并联关系或Y或Δ关系。(2)电源之间的等效变换两种理想电源之间是没有等效而言的,由于 它们是无穷大功率源。而两种实践 模型之间是可以等效互换的。在等效互换的进程 中一定留意 :电源模型衔接 的端钮地位 不能移动 ,衔接 在两个电路端钮上的电压源模型变换为电流源模型时(或电流源模型变换为电压源模型时),电源的内阻不变,只是电流源的数值等于电压源的数值除以其内阻(或电压源的数值等于电流源的数值乘以其内阻)。2、检验学习结果解析(1)图1.18(a)所示电路中,设US1=2V,US2=4V,RU1= RU2= R=2Ω。求图(c)电路中的理想电流源、图(d)中的理想电压源发出的功率,再辨别 求出两等效电路中负载R上吸收的功率。依据 计算结果,你能得出什么样的结论? 解析:首先把图(a)电路中的两个电压源模型变换为图(b)中的两个电流源模型,有 A, A RI1= RI2= RU1=2Ω因而 ,图(c)中的电流源模型和图(d)中的电压源模型为 IS= IS1+ IS2=1+2=3A, RI= RI1∥RI2=2∥2=1Ω US= IS×RI=3×1=3V RU= RI=1Ω求出图(c)中端电压UAB和图(d)中电流I UAB=IS×(RI∥R)=3×(1∥2)=2V A所以,图(c)电路中理想电流源发出的功率为 PI发=IS×UAB=3×2=6W电阻R上吸收的功率为 W图(d)中的理想电压源发出的功率为 PU发=I×US=1×3=3W这是关于 自学考试电子技术基础三的电子书与答案的解答。15

315 评论(8)

推三轮去拉萨

楼主,我帮你查了些资料,你看有用没,有用的话一定要记得给我加分哦。谢谢了,考试一次通关!呵呵呵!《电子技术基础》(含模拟电路、数字电路)考试大纲一、本课程的基本要求一)模拟部分1.熟练掌握普通二极管、稳压管的外特性和主要参数,正确理解PN结的单向导电性。2.熟练掌握双极型、单极型三极管的外特性和主要参数,正确理解它们的工作原理。3.熟练掌握共射(共源)、共集(共漏)和共基组态放大电路的工作原理;静态工作点;用微变等效电路法分析增益、输入和输出电阻。正确理解图解分析法;电流源的工作原理。4.熟练掌握含有一个时间常数的单级放大电路的频率特性以及FH和FL,正确理解Bode图的含义,一般了解频率失真和增益带宽积的概念。5.熟练掌握功率放大电路的工作原理、输出功率和效率的估算,正确理解非线性失真的原因。6.熟练掌握差动放大电路的工作原理、输入和输出方式、差模增益、差模输入和输出电阻,正确理解共模抑制比的概念。7.正确理解多级放大电路中的零点漂移现象,一般了解多级放大电路级与级之间的耦合方式。8.熟练掌握理想运算放大器、实际运算放大器的主要参数。正确理解不同类型运算放大器的特点,一般了解一种典型运算放大器的工作原理。9.熟练掌握用集成运算放大器组成的反馈放大电路类型和极性的判断、负反馈对放大电路性能的影响,深度负反馈下的闭环增益估算。正确理解AF=A/(1+AF)公式的含义、自激振荡的条件和根据要求正确引入反馈。10.熟练掌握产生正弦波振荡的条件、RC正弦波发生电路,正确理解LC正弦波发生电路的工作原理,一般了解石英晶体振荡电路。11.熟练掌握集成运放组成的比例、求和、积分运算电路,正确理解虚短和虚断的概念和二阶有源低通电路,一般了解其它运算电路和其它有源滤波器。12.熟练掌握比较电路的基本特性,正确理解非正弦波发生电路的工作原理。13.熟练掌握电容滤波桥式全波整流电路的工作原理和整流电压的计算、线性稳压电路的工作原理,正确理解开关稳压电路的工作原理,一般了解电感滤波电路的特点。二)数字部分1.掌握双极型晶体管和MOS管的工作区划分及相应的等效电路;了解双极型晶体管和MOS管的开关工作过程及有关参数。2.掌握常用数制与编码,主要是二进制、十进制、十六进制、BCD码、原码、补码、反码以及它们之间相互转换的方法。3.熟练掌握逻辑代数的基本定律、定理及基本规则,逻辑问题的描述方法,逻辑函数的代数法化简和卡诺图化简。4.掌握TTL和CMOS基本逻辑门的功能和主要外特性;了解ECL及其它CMOS门的主要特点。5.掌握组合逻辑电路的分析与设计方法,了解竞争冒险现象与消除方法。6.熟练掌握常用集成组合逻辑器件的逻辑功能及使用方法,正确理解他们的工作原理。7.熟练掌握触发器的逻辑功能、外特性及其应用,正确理解触发器的工作原理,了解其电路结构。8.掌握时序逻辑电路的分析方法和同步时序逻辑电路的设计方法。9.掌握常用集成时序逻辑器件的逻辑功能及使用方法,正确理解他们的工作原理。10.了解CMOS存储单元的基本工作原理和集成存储器的逻辑功能;了解PLD的基本工作原理。11.掌握单稳态触发器、施密特触发器、多谐振荡器等脉冲单元电路的工作原理,并了解这些电路的典型应用;掌握波形分析方法及其主要参数的工程估算方法。12.掌握A/D与D/A转换的基本原理;了解常用A/D与D/A转换方法。二、本课程的教学内容一)模拟部分(一)、半导体器件基础1.半导体的基础知识;2.半导体二极管、稳压管;3.双极型三极管;4.场效应管。(二)、放大电路基础1.单管共射放大电路的工作原理;2.放大电路的分析方法;3.晶体管单管放大电路的三种基本接法;4.场效应管单管放大电路;5.单管放大电路的频率响应;6.多级放大电路以及级间耦合。(三)、集成运算放大电路1.集成运算放大电路的基本单元电路;2.集成运算放大电路的性能指标以及使用注意事项。(四)、放大电路的负反馈1.负反馈放大电路的组态;2.反馈的表示方法;3.深度负反馈下放大电路的近似计算;4.负反馈对放大电路性能指标的影响;5.负反馈放大电路的自激振荡以及消除方法。(五)、运算电路1.比例运算电路;2.加减法运算电路;3.积分电路和微分电路;4.对数和指数运算电路;5.乘法和除法运算电路。(六)、有源滤波电路1.低通滤波电路(LPF);2.高通滤波电路(HPF);3.带通滤波电路(BPF);4.带阻滤波电路(BEF)。(七)、电压比较器1.常用的电压比较器;2.电压比较器的灵敏度和响应时间;3.集成电路比较器。(八)、波形发生与变换电路1.正弦波振荡电路;2.非正弦波振荡电路;(九)、功率放大电路1.功率放大电路的特点;2.互补对称功率放大电路;3.集成功率放大电路。(十)、直流稳压电源1.直流电源的组成;2.整流电路;3.滤波电路;4.稳压电路;5.集成三端稳压器。二)数字部分(一)、逻辑代数基础1.概述:数字量和模拟量,数制与码制,算术运算与逻辑运算。2.逻辑代数的三种基本运算、基本公式和常用公式。3.逻辑代数的基本定理。4.逻辑函数的代数化简法。5.逻辑函数的卡诺图化简法。(二)、门电路1.半导体二极管和三极管的开关特性。2.TTL门电路:TTL与非门的工作原理、静态输入特性、输出特性、动态特性,其它类型TTL门电路及改进系列。3.OS门电路:CMOS反相器的工作原理、静态输入特性、输出特性、动态特性,其它类型CMOS 门电路及改进系列。(三)、组合逻辑电路1.组合逻辑电路的分析方法和设计方法2.常用集成组合逻辑电路:编码器、译码器、数据选择器、数据分配器、加法器、数值比较器。合逻辑电路中的竞争—冒险现象:竞争冒险产生的原因、检查方法和消除方法。(四)、触发器1.触发器的电路结构与动作特点:基本RS触发器、同步RS触发器、主从RS触发器、主从JK触发器、边沿D触发器。2.触发器的逻辑功能及其描述方法。3.触发器逻辑功能的转换。(五)、时序逻辑电路1.时序逻辑电路的分析方法与步骤。2.同步时序逻辑电路的设计方法与步骤。3.常用集成时序逻辑电路:寄存器和移位寄存器、计数器、序列脉冲发生器。(六)、脉冲波形的产生与整形1.施密特触发器:由门电路组成的施密特触发器、集成施密特触发器,施密特触发器的应用。2.单稳态触发器:由门电路组成的单稳态触发器、集成单稳态触发器,单稳态触发器的应用。3.多谐振荡器:由门电路组成的多谐振荡器、由施密特触发器组成的多谐振荡器,石英晶体多谐振荡器。4.555定时器及其应用:555定时器的组成和工作原理,用555定时器接成的单稳态触发器,用555定时器接成的施密特触发器,用555定时器接成的多谐振荡器。(七)、半导体存储器1.只读存储器(ROM):固定ROM、PROM、和EPROM。2.随机存取存储器(RAM):RAM的结构及工作原理。3.存储器容量的扩展:字扩展和位扩展,存储器的应用。(八)、可编程逻辑器件1.可编程阵列逻辑(PLA)的基本电路结构和应用。2.通用阵列逻辑(GAL)的电路结构、输出逻辑宏单元(OLMC)及应用。3.可擦除的可编程逻辑器件(EPLD)的基本结构和特点。4.现场可编程门阵列(FPGA)的基本结构与应用。(九)、数—模和模—数转换1.D/A转换器:权电阻网络D/A转换器、T形电阻网络D/A转换器、权电流型D/A转换器,具有双极性输出的D/A转换器,D/A转换器的转换精度与转换速度。2.A/D转换器:A/D的基本原理,直接A/D转换和间接A/D转换,A/D转换器的转换精度与转换速度。三、本课程的教学重点与难点一)模拟部分重点:二极管、三极管和场效应管的特性曲线;基本放大电路的微变等效电路分析法;三种基本组态放大电路的工作原理及特点;单管放大电路的频率响应;差动放大电路的工作原理;理想运算放大器的概念和主要参数;负反馈放大电路的分类及对放大电路性能指标的影响;集成运算放大电器的线性应用和非线性应用;功率放大电路的工作原理、输出功率及效率的估算;整流、滤波、稳压电路的工作原理以及三端集成稳压器的典型应用。难点:三极管电流分配关系;放大电路静态工作点对其性能的影响;放大电路的频率响应;差动放大电路输入、输出方式;深度负反馈下放大电路闭环增益的近似估算;非正弦波发生电路;功率放大电路的输出功率、效率以及失真三者之间的关系。二)数字部分重点:双极型晶体管和MOS管的开关特性;二进制、十进制、BCD码以及它们之间相互转换的方法;逻辑代数的基本定律、定理及规则以及逻辑函数的代数法化简和卡诺图化简;TTL和CMOS基本逻辑门的功能和主要外特性;组合逻辑电路的分析与设计方法和常用集成组合逻辑器件的逻辑功能及使用方法;触发器的逻辑功能、外特性及其应用,时序逻辑电路的分析方法和同步时序逻辑电路的设计方法;常用集成时序逻辑器件的逻辑功能及使用方法;单稳态触发器、施密特触发器、多谐振荡器等脉冲单元电路的工作原理及应用;A/D与D/A转换的基本原理及使用方法。难点:BCD码、原码、补码、反码以及它们之间相互转换的方法;逻辑问题的描述方法和逻辑函数的代数法化简和卡诺图化简;TTL和CMOS基本逻辑门的主要外特性;触发器的逻辑功能、工作原理及其电路结构;同步时序逻辑电路的设计方法;用常用集成计数器设计任意进制计数器的方法;CMOS存储单元的基本工作原理;脉冲单元电路的工作原理及其主要参数的工程估算方法;A/D与D/A转换的基本原理。四、本课程的教学参考资料1.《电子技术基础》(模拟部分),康华光主编,高等教育出版社,1999年2.《电子技术基础》(数字部分),康华光主编,高等教育出版社,2000年。3.《模拟电子技术基础》,童诗白主编,高等教育出版社,1998年。4《数字电子技术基础》,阎石主编,高等教育出版社,1998年。

240 评论(8)

烟圈缠绕0

电子技术包括模拟电子技术和数字电子技术两部分。模拟电子技术主要包括放大、反馈、滤波、振荡四大重点。放大器分分立元件放大器和集成放大器。分立元件放大器又分BJT放大器和FET放大器两个重点。BJT放大器有共射、共集、共基三种,FET放大器分共源、共漏、共栅三种。集成放大器重点着眼于知道三无穷大一个零特点及外部应用。理想集成放大器三无穷大指放大倍数无穷大、共模抑制比CMRR无穷大和输入电阻无穷大,一个零指输出电阻应为零。数字电子技术处理高低电平。主要分组合逻辑电路和时序逻辑电路两大重点,目前逻辑电路都已经实现集成化又分为TTL(晶体管—晶体管逻辑电路)和MOS逻辑电路(场效应管逻辑电路)。组合逻辑电路主要分反相器、与非门、或非门等,时序逻辑电路主要包括寄存器、触发器、计数器等。Multisim是目前应用最广泛的电子技术仿真平台。

279 评论(14)

海豹糯米糍

放大电路的交流小信号模型多级放大,高频小信号及概念功放电路的类型识别,甲、乙类的计算基本电流源(镜像电流源)差动放大电路中共差模计算判断反馈电路类型及分析负反馈电路的定性影响震荡频率

174 评论(13)

四合院追糖葫芦

1、半导体器件PN结及半导体二极管、半导体三极管、场效应管。2、基本放大电路共射极基本放大电路的组成及工作原理、放大电路的基本分析方法、放大器的工作点稳定问题、共集电极电路和共基极电路、场效应管放大电路。3、集成运算放大电路电流源、差分放大电路、集成运算放大电路。4、集成运算放大器的应用比例运算电路、求和电路、积分和微分电路、对数和指数电路、有源滤波器、电压比较器。5、负反馈放大电路反馈的基本概念和分类、反馈放大器的方框图及放大倍数的一般表达式。负反馈对放大电路的影响、负反馈放大电路的分析计算。6、信号产生电路正弦波振荡电路的振荡条件、RC正弦波振荡电路、非正弦波发生电路。7、功率放大电路互补对称功率放大电路。三、课程的教学要求 1、半导体二极管及其基本电路了解PN结的形成,理解PN结的单向导电性;掌握二极管的特性和主要参数;掌握稳压管的工作原理及限流电阻的选择。掌握二极管的基本电路及分析方法。2、半导体三极管及放大电路器件部分要求理解三极管的电流分配及放大原理。重点掌握三极管的特性和主要参数。在放大器的三种基本组态(共射、共基、共集)中,应重点掌握共射和共集电路的组成和工作原理。图解分析法,主要用来确定静态工作点和分析动态工作过程,不要求用它来计算放大倍数。小信号模型分析方法是分析放大器的一个重要工具。要求理解H参数的引出、等效电路的建立、受控电源的概念,掌握用小信号等效电路计算放大电路的电压放大倍数、输入电阻和输出电阻的方法。通过射极偏置电路的学习,掌握温度变化对静态工作点的影响,以及稳定静态工作点的原理。 3、场效应管放大电路了解结型场效应管的结构和工作原理,掌握结型场效应管放大电路的分析方法。4、集成电路运算放大器了解集成电路运算放大器的组成、特点。了解电流源电路的特点及在集成电路运算放大器的作用。差分放大电路是模拟集成电路的重要组成单元,要求掌握工作原理及各项指标的计算。5、信号的运算与处理电路重点掌握比例运算电路、加法电路、积分电路、微分电路,了解对数放大电路和电压比较器的工作原理。了解有源滤波器的基本概念、分类,重点掌握二阶有源滤波器的组成、传递函数及分析方法。6、反馈放大电路反馈是模拟电子技术中的重点和难点内容之一。掌握反馈的基本概念和分类、反馈放大器的方框图及放大倍数的一般表达式;理解负反馈对方大电路的影响;熟练掌握在深度负反馈条件下负反馈放大电路的近似估算方法。7、信号产生电路掌握振荡电路的组成和产生振荡的相位平衡、幅值平衡条件。掌握RC桥式正弦波振荡电路产生振荡的条件和振荡频率的计算方法;了解LC振荡器的工作原理。 掌握单门限比较器和迟滞比较器,理解方波和锯齿波发生器的工作原理。8、功率放大电路本章的主线是功率、效率和非线性失真三方面的问题。三者之间是有矛盾的,要通过具体电路来阐明解决矛盾的思路与措施。熟悉放大器的三种工作状态——甲类、乙类和甲乙类的工作特点。互补对称功率放大电路是本章的重点内容,要求掌握工作原理和分析方法。请采纳!

210 评论(8)

相关问答

  • 基础化学自考重点归纳

    化学的知识点较多,记忆的内容较分散,但其内容固定,不像数学那样灵活多变,复习时要以考试大纲为重点.对基础化学知识点的考查主要侧重于一些规律性的内容,如熔点、酸性

    香了哩个辣 2人参与回答 2024-09-22
  • 数学基础自考重点归纳

    为形式化公理方法。 公理体系的合理性和公理化方法提出三个基本的要求: (1)协调性要求。 (2)独立性要求。(3)完备性要求。 (二)几何的统一化 F·

    安德鲁鱼 3人参与回答 2024-09-21
  • 法律基础自考重点归纳

    1.学生增强国防观念的途径有那些?1. 简要回答职业道德的基本要求?答:职业道德的基本要求:爱岗敬业、诚实守信、办事公道、服务群众、奉献社会。2. 阐述社会主义

    Oo炼狱天使oO 4人参与回答 2024-09-21
  • 现代科学技术基础自考重点归纳

    根据考生的需要,教务老师搜集整理了湖北自考00481现代科学技术与当代社会课程考试大纲的相关信息,以供考生查看。课程代码:00481课程名称:现代科学技术与当代

    聰軎膥賳过 2人参与回答 2024-09-21
  • 电子技术基础三自考重点

    课本上算的电流是近似值。自己算一算100/220就知道了。

    汀臭崽儿 6人参与回答 2024-09-21

自考地区