自考问答 自考本科自考百科
自考问答 > 自考百科 > 自考本科线性代数笔记

自考本科线性代数笔记

发布时间:

自考本科线性代数笔记

发布时间:

自考本科线性代数笔记

把 n 个不同的元素排成一列, 叫做这 n 个元素的全排列 (简称排列) .n 个不同元素的所有排列的种数, 通常用 表示. 且有:

先规定各元素之间有一个 标准次序 . 当某一对元素的先后次数与标准次序不同时, 就说它构成 1 个 逆序 . 一个排列中所有逆序的总数叫做这个排列的 逆序数 . 逆序数为奇 (偶) 数的排列叫做 奇 (偶) 排列 .

定理 1 一个排列中的任意两个元素对换, 排列改变奇偶性. 证明?

推论 奇 (偶) 排列对换成标准排列的兑换次数为奇 (偶) 数. 证明? (标准排列逆序数为 0 , 是偶数列. )

为给出 n 阶行列式的定义, 先研究三界行列式的结构. 三阶行列式定义为:

等式右边的每一项都是三个元素的乘积, 这三个元素 不同行不同列 . 因此, 每一项除正负号以外都可以写成 的形式. 即每一项元素的第一个下标(行标)排为标准次序 123 , 第二个下标(列标)排为 为 1, 2, 3 三个数的某个排列.

各项的正负号与列标的排列对照: 带正号的三项列标排列为 123, 231, 312 均为偶排列; 带负号的三项列标排列为 132, 213, 321 均为奇排列. 故:

其中 t 为排列 的逆序数.

定义 设有 个数, 排成 n 行 n 列的数表

则 个形如 的项的和 称为 n 阶行列式, 记作

简记作 , 其中数 为行列式 D 的 元.

主对角线以下 (上) 的元素都为 0 的行列式叫做上 (下) 三角形行列式; 特别主对角线一下和以上的元素都为 0 的行列式叫做对角行列式.

下三角行列式 ​证明?

记:

则行列式 称为行列式 的 转置行列式 .

性质 1 行列式与它的转置行列式相等.

​证明?

性质 1 说明了行列式中的行与列具有同等的地位.

性质 2 对换行列式的两行 (列) , 行列式变号。

​证明?

表示第 i 行, 表示第 i 列, 对换 i, j 两行记作 , 对换 i, j 两列记作 .

推论 如果行列式中有两行 (列) 完全相同, 则此行列式等于零.

性质 3 行列式中某一行 (列) 中所有元素都乘同一数 k, 等于用数 k 乘此行列式. 性质 4 行列式中如果有两行 (列) 元素成比例, 则此行列式等于零.

性质 5 若行列式中的某一行 (列) 的元素都是两数之和: 则: ​证明?

性质 6 把行列式的某一行 (列) 的各元素乘同一个数然后加到另一行 (列) 对应的元素上去, 行列式不变.

​证明?

在 n 阶行列式中, 把 元 所在的第 i 行和第 j 列划去后, 留下来的 阶行列式叫做 元 的余子式, 记作 .

叫做 元 的代数余子式.

引理 一个 n 阶行列式, 如果其中第 i 行所有元素除 元 外都为零, 那么这行列式等于 与它的代数余子式的乘积, 即

证明?

定理 行列式等于它的任一行 (列) 的各元素与其对应的代数余子式乘积之和, 即

证明?

推论 行列式某一行 (列) 的元素与另一行 (列) 的对应元素的代数余子式乘积之和等于零. 即

本节首先引入了 线性方程 以及 线性方程组 的概念,通过解一个线性方程组,指出了线性方程组解的几个一般情况( 无解,有唯一解,有无穷多解 );接着,引入了 矩阵 的概念,指出可以利用 矩阵 来表示线性方程组的 系数 和 方程等号右边的常数 。最后,讲解了一种解线性方程组的方法( 高斯消元法 ),并论述了线性方程组的解的情况( 存在性 和 唯一性 )。

包含变量 , , , 的 线性方程 是形如

的方程,其中 与系数 , , , 是实数或复数,通常是已知数。 注意,这里的线性,指的是变量的次数,也就是 的次数。与系数和方程右边的数无关。

线性方程组是由一个或几个包含相同变量 , , , 的线性方程组成的,例如:

线性方程组的解是一组数 ,用这组数分别代替 时所有方程的两边相等。 方程组所有可能的解的集合称为线性方程组的 解集 。若两个线性方程组有相同的解集,则这两个线性方程组称为 等价的 。

以有两个变量的线性方程组为例,从解析几何的角度考虑,两个方程可以分别看作两条直线,它们之间可能有唯一一个交点,也可能平行或者重合,由此引出线性方程组解的几个情况:

如果一个线性方程组 有一个解或无穷多个解 ,那么称这个线性方程组是 相容的 ; 如果一个线性方程组 无解 ,那么称这个线性方程组是 不相容的 。

一个线性方程组包含的主要信息可以用一个称为 矩阵 的紧凑的矩形阵列表示。给出如下方程组: 那么矩阵 称为该方程组的 系数矩阵 。 而 称为该方程组的 增广矩阵 。

解线性方程组的基本思路是把方程组用一个更容易解的等价方程组(即有相同解集的方程组)代替。 用来化简线性方程组的三种基本变换是:

例如,有如下方程: 通过上述的三种变换,可以化简成如下形式: 从而解出方程。 上述三种基本变换对应于 增广矩阵的下列变换 :

线性方程组的两个基本问题:

例:确定下列方程组是否相容:

其增广矩阵可按上述方法化简为:

显然,如果写成方程组的形式,第三个方程 不可能成立,所以这个方程组无解,也就是说,这个方程组是 不相容的 。从几何的角度来看,是因为没有同时落在三个平面上的点。

本节首先描述了线性代数研究的基本问题:解线性方程/线性方程组,由此引入了矩阵的概念,介绍了一种解线性方程组的基本方法,并讨论了线性方程组解的几种情况。

自学考试线性代数笔记

那么我们如何求解 呢?还是使用消元法,之前我们说使用消元法求解方程 时,我们对一种情况是无法处理的,那就是矩阵 不可逆的情况,之前对这种情况的解释是 求出的解不唯一 ,这其实正好对应了现在我们所认识到的“空间”的概念。我们从最简单的零空间( )的计算谈起。

例1: ,求 中的 构成的零空间

先将方程写出,如下

首先观察矩阵 我们发现,第三行是前两行的和,这意味着即使主元为 ,我们也得继续消元下去。那么按部就班,有

在消元的过程中,我们发现矩阵 的 主元(Pivot) 数量为 ( 和 ),主元的个数称为矩阵的 秩(Rank) ,因此在本题中矩阵 的秩为 。

接下来就是回代求解了,由于消元得到的 不是一个严格的上三角矩阵,对角线上的 给我们造成了解不唯一的麻烦,所以这里我们先来声明几个概念

中,列 和 被称为 主列(Pivot Columns,主元所在的列) ,其余两列 和 被称为 自由列(Free Columns) ,所谓自由列就是表示其对应的未知变量 ( 表示自由列是第 列)可以被任意分配值。因为回代求解时,只有主列对应的未知数的解有确定值。因此矩阵 中的 主变量(主元) 为 和 , 和 为 自由变量 。

(1)我们假设,令 ,代入方程

解得

因此当 时,解向量为 ,这只是零空间中的一个解,这个解表示 倍的列 倍的列 ,如果想找出更多零向量中的解,我们只需要求它的倍数,所以 ,这是一条在四维空间中无限延伸的直线,但它不是整个零空间。

(2)我们再令 ,代入方程

解得

因此当 时,解向量为 ,因此另一条在四维空间中的直线为

那么还能为 赋其他值吗?很明显其他情况都可以被 和 的线性组合所涵盖,所以这两个解向量足够代表空间的特征了,我们称这两个解向量为 特解 ,其特殊之处在于我们给自由变量赋值为 和 。通过特解的任意倍的线性组合,可以构造出整个零空间。因此便得出了矩阵 的零空间

对于一个 的矩阵A,若其秩为 ,那么意味着其主变量为 个,而自由变量为 个。也就是说,只有 列起作用。我们需要先对矩阵 进行消元,得到 个主元,由于有 个变量 ,我们再将其中的 个自由变量依次赋值为 。接着求解方程的特解,将特解的任意倍进行线性组合即可得到矩阵 的零空间。

尽管上面的消元法看上去已经很完美了,但事实上仍有化简的余地,最后得到的 矩阵仍可以被进一步化简。我们以上文中的 为例,继续化简的目标是令对角线上的主元为1,并且通过列交换将主元放在一起,把自由列放在一起来构成新的矩阵,操作如下

也就是说最终我们能将上三角矩阵 化简成矩阵 ,矩阵 的一般形式为

其中, 表示主列,由于 个主列的主元被化简成了 ,因此这部分变成了 维单位矩阵, 表示自由列,共有 个自由列。有了矩阵 我们可以改写 的表达形式

这里的 为零空间矩阵,即各列向量由特解组成的矩阵

需要注意的是,这里的单位矩阵和矩阵 中的有所不同,这里的 是 维的,是将 个自由变量分别赋值为 或 得到的。将上文中的示例代入到 和 ,得到

由于 和 是主列, 和 是自由列,因此只需交换零空间矩阵中的第2、3行即可得到特解 和 。 因此将矩阵 化简称矩阵 可以直接求解零空间。 我们用下面一个例题来试验一下:

例 ,求解 中 构成的零空间。

(1)将 消元为 :

(2)将 化简为 :

(3)得到零空间矩阵 :

(4)得到零空间:

对于 我们知道这个方程不一定有解,在之前的章节中说明了 是否有解取决于 是否在 的列空间中,我们再通过一个例子来说明一下

例 求方程 的可解条件。

在这个方程中,观察矩阵A,发现矩阵中第三行为第一行和第二行的和。根据之前的Gauss-Jordan消元法,我们可以得到

代入方程,会发现最后一行 ,这一行方程必须成立,因此这一行就是方程的可解条件。同时,它还反映了 向量的第三个分量是前两个分量之和,这也与矩阵 的特点一致,这也印证了 是否有解取决于 是否在 的列空间中。

结合之前的章节总结出 有解条件:

接下来介绍通解和特解,通解就是满足方程所有的解,将“无穷解”用一种形式表达出来,对于 这个方程

因为矩阵零空间向量代入方程最后结果等于 ,所以它不会影响等式,而是把方程的解向量扩展到一个类似子空间上,使我们求出的解更具有普遍意义,而求解零空间我们在上文也已经介绍,下面我们只需要关注如何求特解即可。在之前求解 方程的特解时,我们分别将自由变量赋值为 或 ,得到

观察这个表达式会发现,只要将系数 和 定为 就可以得到零空间中的零向量,而且我们不能在求解 时将自由变元都赋为 。但是在 中,只要 不是 ,我们就可以将自由变元全部赋为 ,使用此方法即可得到特解。

接下来补充上述例题中方程的条件

Gauss-Jordan消元后得到

将 回代方程得到

解得特解为

利用上一节的知识我们很容易求出 的零空间为

因此 的解为

这个解集在几何角度的解释是 上的一个不过原点的二维平面,显然这个解集无法构成一个向量空间,因为解集中不包含零向量。

我们在消元求 的过程中会发现,矩阵的秩对最后解的形式有着重要的影响,下面我们来总结一下其中的规律。

对于 的矩阵 ,列满秩时,意味着没有自由列, ,此时零空间中只有零向量(不需要求零空间), 的解要么有解且唯一(特解 ),要么无解。例如

消元,由于两列线性无关,因此只有两个主元,逐行减去第一行的若干倍,行三和行四清零,得到第二个主元,然后各行都减去第二个主元的若干倍,最终第二个主元化为 的得到矩阵

对于 的矩阵 ,行满秩时,意味着有 个主元(每一行各一个), ,此时自由变元有 个,必然有解而且有无穷多解,例如

最后我们会消元得到

对于 的矩阵 ,行列满秩时,意味着矩阵可逆, ,此时自由变元有 个,经过消元,最终矩阵可化为单位矩阵 ,即一个全是主元的方程组,最终只能有一个唯一解。例如

最后消元得到

对于 的矩阵 ,不满秩时,意味着通过消元最终会得到 ,因此方程的解要么无解,要么无穷多解(特解+零空间所有向量)

综上所述,会发现自由变量总为 个,所以通过判断自由变元的个数可以初步判断 的解的结构:如果没有自由变元,意味着方程的解唯一或者无解;如果存在自由变元,意味着方程的解有无穷多解或者无解。也就是说,自由变元是否存在决定了方程的解是否唯一。另一点是,可以通过观察消元后矩阵 是否存在 行来进一步判断方程是否有解:如果矩阵 中没有零行时,意味着方程一定有解;如果存在零行,则需要考虑方程是否满足可解条件。

除此之外,我们还发现了零空间实际上就是用来判断矩阵 的各列向量是否是线性无关的,如果各列向量是线性无关的,那么零空间中只有零向量,如果各列向量是线性相关的,那么零空间中除了零向量还有其他向量。因此零空间反映的就是 各列向量的线性组合。

当我们求解方程时,例如

矩阵表达如下

除了使用消元法或判断矩阵是否满秩以外,我们还可以从列空间的角度来看这个方程,改写一些这个矩阵表达如下

那么我们判断这个方程是否有解的条件实际上就是判断向量 是否在以向量 和向量 构成的列空间中,换句话说,向量 是否可以表达成向量 和向量 的线性组合。由于向量 和向量 是线性无关的,因此可以张成一个二维平面,而向量 只是其中的一个二维向量,因此可以推断出方程一定有解。

上篇笔记讲了向量与矩阵在二维空间的几何含义,这篇从三维空间说起。 相比于二维空间下的线性变换,三维空间多考虑了一个基向量 。 三维空间进行线性变换可以变换为一个三维空间、一个平面、一条线、甚至是原点。

行列式是用来度量变换前后空间改变的比例大小。我们通常以基向量构成的平面或立体为观察点,只需观察变换前后基向量构成的空间大小变化情况,就能得出行列式的值。

行列式的值可正可负,也可为0。

取基向量为 , ,则它们围成的正方形面积为1。若变换后的基向量的相对 顺序 不改变,即 仍在 的右边,那么行列式为正,反之为负。

明白了行列式的几何意义,行列式为0就很容易理解了。线性变换将空间面积/体积压缩至0。 2D空间中,det=0意味着空间被压缩成了一条直线或者是一个点。 3D空间中,det=0意味着空间被压缩成了一个平面、直线、或者是一个点。

以方程组来阐述:

向量 经过一个线性变换 变成了向量 。

1.如果 将此3维空间压缩到至更低维度,则相当于行列式为0,此时 没有逆变换 ,因为线性变换后空间变成了平面、直线、或者是一个点。 上述情况下,都不能通过逆变换将其变为原来的3D空间。

但 可能存在解,因为 恰好处于变换后的平面、直线上,甚至于 为零向量。

变换后空间的维度被称为此矩阵的 秩 ,因此如果不是满秩,则矩阵的列必然线性相关。因为变换后的某些基向量没有为 张成空间 做出贡献。我们用 列空间 来描述变换后 基向量 张成的空间,那么秩更精确的定义就是列空间的维数。

只要变换后不是满秩,那么说明变换压缩了空间,并且有一系列向量变换成了零向量,这类向量张成的空间我们称之为零空间——或者叫做 核 。即齐次线性方程组的解就是 核 。

表明变换为满秩。此时空间中只有零向量不进行变换。其他所有向量都进行了变换。变换存在逆变换,我们可以通过计算逆变换来求解方程组。

逆变换 的性质如下:

求解形如 的非齐次线性方程组时,如果方程组有解(行列式不为0),那么一定存在唯一一个 使得线性变换后与 重合。

之前我们针对的都是方阵,即行数与列数相等的矩阵,如果换成非方阵,情况有什么不同呢?

我们往往要针对不同维度的变量进行转换,或者是降维,或者是升维,一个很常见的应用就是神经网络,信息在不同维度间传递,这就涉及到利用非方阵来进行线性变换。

以几何意义来看 ,其基向量变成了 三维 ,但 的一组基向量只包含2个向量。因此 所代表的线性变换是把空间中的向量从 二维 变成了 三维 ,但是其基向量张成的空间维数仍为2,也就是说其秩为2,与 变换前 基向量张成的空间维数一样,因此这个非方阵仍然是满秩。

主要内容来源于b站up主 @3Blue1Brown 的 线性代数的本质

自考本科线性代数和考研线性代数

研究生入学考试中的数学是由高等数学,线性代数,概率三科组成的。其中线性代数是大学中理工科专业中的一门必修课。没什么区别,就那点东西,相对高数和概率而言比较简单。

当然有区别的

为大家整理了一份专升本学习资料,包括各大机构的语文,数学,英语以及各大专业课的学习资源,适合想自考的学生,后面会不断汇聚更多优秀学习资源,供大家交流分享学习,需要的可以先收藏转存,有时间慢慢看~

专升本资源实时更新

链接:

提取码:2D72

很高兴回答你的这个问题 首先要告诉你高数跟线代没有什么关系,因为线代属于高等代数分支,跟高等数学是不同的,所以没学高数不要紧. 因为我学的线性代数教材不太好(很多问题讲不清楚),而且老师上课讲的稀里糊涂的,所以我后来自学的线性代数以及高等代数(我们需要考线性空间,所以需要高等代数的知识) 事实表明,不学高等代数的话,2周绝对就能把线代摆平,达到考研水平. 你最好买一本考研用书,里面有常用公式以及大量的例题,最好是真题.然后就是反复看反复做,背公式.我那时候大概每天学线代+高代15小时左右,一周多点就把线代学完了.如果你不要求定理证明的话会更加快. 自学方面我很有经验,有问题可以hi我

你好,很高兴回答你的这个问题首先要告诉你高数跟线代没有什么关系,因为线代属于高等代数分支,跟高等数学是不同的,所以没学高数不要紧。另外我个人经验,因为我学的线性代数教材不太好(很多问题讲不清楚),而且老师上课讲的稀里糊涂的,所以我后来自学的线性代数以及高等代数(我们需要考线性空间,所以需要高等代数的知识)事实表明,不学高等代数的话,2周绝对就能把线代摆平,达到考研水平。你最好买一本考研用书,里面有常用公式以及大量的例题,最好是真题。然后就是反复看反复做,背公式。我那时候大概每天学线代+高代15小时左右,一周多点就把线代学完了。如果你不要求定理证明的话会更加快。自学方面我很有经验,有问题可以hi我

线性代数自考

线性代数考试题自考难不难?自考考试的难度是挺大的,是非全日制成人继续教育途径中最难的一种,一般来说,最后的通过率不高,但如果自考生通过考试了,最后获得的证书含金量是很高的。对报考要求和院校专业有任何疑问,招生老师在线免费咨询:线性代数考试题自考不难,考生只要能够自觉对教材内容进行学习,复习的时候刷一刷真题,一般都能考过。如果考生实在觉得考试困难过不了,那么可以考虑参加自考助学班或是报培训班进行学习。自考到底难在哪1、自考最难的地方,就是搜集信息。自学考试是举手制,任何事情都是要自己主动去关注,包括报名,买资料,备考,考试,申请论文,毕业,学位等等信息,没有人通知你什么时候该做什么,你自己如果没有关注到,很可能就会错过时间点。网上的信息非常庞杂,教育考试院官网的信息有时候也不好找。2、英语和数学。英语是所有专业都需要考的。数学的话,理科,工科,经济金融这些专业一般要考高等数学。学不会数学的话,可以选择不考数学的专业,也有很多选择的空间。至于剩下的,没啥难的,只要你能识字,一般的教材都能看懂,自考的教材都不深,都是一个领域最基础的知识。多看看教材,考前刷几套真题,一般没问题。3、坚持。自考坚持难,这是大家众所周知的事实,也是自考整体通过率低的主要原因。以上是关于成人自考相关内容,自考/成人高考有疑问、不知道如何选择主考院校及专业、不清楚自考/成考当地政策,点击底部咨询猎考网,免费领取复习资料:

教务老师,听见很多自考的同学在问自考线性代数难吗(自考线性代数难学吗知乎)相关问题,那么今天教务老师来告诉同学们这些问题的解答!自考的线性代数和概率论难不难?个人认为这两门挺好学的,前提是有中学数学基础。这两门课程的应用性都很强,在计算机和电子领域都有应用,推荐先学线性代数,因为概率论与数理统计会有少量线性代数的内容,它们不是孤立的。由此可见线性代数的重要性。自考的线性代数和概率论技巧线性代数推荐武汉大学的那本教材,讲解通俗易懂,而且每章后面都有相应的实际背景应用例子,学起来难度不大。线性代数主要是抽象,要反复多看书多做习题。概率论与数理统计,推荐茆诗松的那本教材例子很多很丰富,不知道题主有没有一些微积分基础,没有的话自学估计比较呛,但也不是不行。因为概率论会涉及一元和多元微积分计算等等内容,而数理统计是以概率论为基础,所以相应理论证明都涉及概率论知识,不过从总体上,概率论与数理统计只要抓住些核心的概念就行。总之,如果仅仅是自学考试过关的话,机会很大。自考本科 线性代数难吗?不难也就一般微积分自考/成考有疑问、不知道自考/成考考点内容、不清楚当地自考/成考政策,点击底部咨询官网老师,免费领取复习资料:

自考线性代数

教务老师,听见很多自考的同学在问线性代数自考难吗(自考专升本线性代数难吗)相关问题,那么今天教务老师来告诉同学们这些问题的解答!自考本科 线性代数难吗?不难也就一般微积分大学里没学过数学,读自考本科,其中有线性代数,难考吗?如果没有基础确实比较难考的,大学跟高中的数学还是相差很远的,不过你最好多看书,自己琢磨例题,考试的内容也是跟例题类似的。祝你自考成功。自考中的线性代数难考吗已经最简单,但是难不难还得看你学没学自考金融本科请问经管类的线性代数难吗亲:金融自考本科线性代数和概率论数理统计科目还是有一定的难度,很多考生就是输在这两门课程上,如基础差更是如此,如果单凭一些视频课件是很难理会的,要通过专人面对面讲解方有点效果,且要不断的做一些计算题方可事半功倍。自考/成考有疑问、不知道自考/成考考点内容、不清楚当地自考/成考政策,点击底部咨询官网老师,免费领取复习资料:

自考高数最大的特点就是题型基本固定,也就是说历年真题很重要;基本都是那几种题型,只要把历年真题里的题型都弄清楚了,考试基本就能过。不过有一点,线代计算比较繁琐,还是熟练点好,不然考试紧张。个人建议,如果时间宽松的话,过一遍书,把每章的课后习题做一下;小节的可以放一下。然后啃历年真题,最后做几套模拟题就行了,一般这一套下来80分不成问题。如果时间比较紧,直接看真题,不会做的对照课本相应章节看答案,弄清楚真题。不过这样的弊端就是考试时做题不熟练,虽然知道步骤,过程容易出错,发挥好了及格也没问题。自考就要对照真题啃教材,一般考试比课本要求简单。另外,线代看课本过例题就行了,开始什么定理推论的引言没必要看。当然是要看一遍书了,主要看例题!每一题都要看懂。有时间的话,做做练习本,前提!要有答案,没答案的不要做! 考前半个月去买10套试卷做。做的时候你会发现题目非常固定。 做完就基本过了

  •   索引序列
  •   自考本科线性代数笔记
  •   自学考试线性代数笔记
  •   自考本科线性代数和考研线性代数
  •   线性代数自考
  •   自考线性代数
  •   返回顶部

自考地区