自考问答 自考本科自考百科
自考问答 > 自考百科 > 自考数学基础知识点总结

自考数学基础知识点总结

发布时间:

自考数学基础知识点总结

发布时间:

自考数学基础知识点总结

为形式化公理方法。 公理体系的合理性和公理化方法提出三个基本的要求: (1)协调性要求。 (2)独立性要求。(3)完备性要求。 (二)几何的统一化 F· 克莱因是近代数学史中非常有名的数学家,他的重要贡献之一,就是透过数学结构的方法为众多几何学分支找到一种内在的结构规律。 表面互不相干的几何学被 F·克莱因用变换群联系到一起,同时变换群的任何一个分类也对应几何学的一种分类。 F· 克莱因用群的结构与理论统一几何学的方法,是抽象结构方法的重要成就,是数学第二次抽象威力的具体体现。。 模型模式的抽象 粗略地说,数学模型是针对或参照某种事物系统的特征或数量关系,采用形式化数学语言,概括地或近似地表述出来的一种数学建构。所谓数学建构,是指使用数学概念、数学符号、数学语言等表述出来的被研究对象的纯关系结构。“纯”是指已扬弃了一切与关系无本质联系的属性,只保留与研究目的有关的本质特征。 具体地说,数学模型有广义的解释和狭义的解释。 (一)广义解释 数学模型是从现实世界中抽象出来的,是客观事物的某些属性的一种近似反映。(二)狭义解释 数学模型是将具体属性抽象出来构成一种特定的数学关系结构,只有那些反映特定问题或特定事物系统的数学结构才叫数学模型。 数学模型的抽象过程 具体的抽象过程我们可以总结为如下几个关键步骤: 首先,分析问题的各种关系,全面地掌握了问题中各种因素之间的联系。其次,确定了各关系之间的本质属性。 第三,建立一笔画的数学模型,第四,把数学模型返回到实际问题之中。检验正确,那么这个抽象的数学模型就可以广泛地加以应用。 中小学数学常见数学模型的抽象 (一)经济数学模型的抽象 在人类的生产生活中,有许多实际问题可以用初等数学来解决,对这些具体问题的抽象处理就形成了许多有关这些方面的数学模型。这些问题主要表现在工程进度、人口增长、收入变等方面。这些问题运用的数学工具大多是代数方程、指数函数以及其它相关的函数概念。这一类的数学模型在现实生活中随处可见,中小学的数学教学应以这些为例深入浅出地抽象、构造及运用这些模型。 (二)运动数学模型的抽象 一些事物在运动中表现出速度、加速度、时间、距离之间的关系,这类问题构成了带有运动特征的数学模型。 (三)逻辑程序数学模型的抽象 逻辑推理形式一直是数学运用的最基本的思想方法,从数学模型的抽象角度把它看作是一种数学方法和结构模型还是近代才引起人们重视的。对于初等数学教育而言,我们以前的数学教育只是在学习几何知识时才开始强化逻辑推理方面的教育,这种数学教育也由于对定义、定理的推导而忽视对逻辑程序自身的注意。近年来,由于计算机的迅速普及使得逻辑程序方面(或算法)的教育就显得越来越重要。 结合初中教学实际谈一谈你 对数学抽象的理解。 数学抽象的教学应当直接指向学生在与数学相关问题上的一般思维水平方面的发展。事实上,义务教育阶段的数学教育是一种公民教育,它给学生带去的绝不仅仅是会解更多的数学题了。这些学生的未来会遇到不同的挑战——一些人需要学习或研究更多的数学,对他们而言,是否能够“思考数学”非常重要;另一些人(他们是受教育的学生中的绝大多数)就业以后基本上不需要解纯粹的数学题(除了参加数学考试),对他们而言,“思考数学”是一种需要,但更多的或许是能够进行“数学的思考”,即在面临各种问题情境(特别是非数学问题)时,能够从数学的角度去思考问题、能够发现其中所存在的数学现象、并将之抽象为数学问题,运用数学的知识与方法去解决问题。对所有的未来公民来说,抽象思维和形象思维水平,归纳推理与演绎推理能力等都是不可缺少的。 这个教学目标的实现也不能仅仅通过研究“纯粹抽象”的数学现象来进行,而应当在研究多种现象与问题(数学的、非数学的)的过程中逐步完成。具体说来,就是让学生经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展数学抽象思维。 教学的主要目的在于使学生能够用数学的语言去刻画现实世界,去发现隐藏在具体事物背后的一般性规律。相对于不同学段的学生而言着重点不一样: 对第一学段的学生来说,能够用数和简单的图表刻画一些现实生活中的简单现象,就是目标;对第二学段的学生而言,应当包括既能够用数和简单的图表刻画一些现实生活中的现象,还应当包含对某些数字信息做出合理的解释;对于第三学段的学生来说,除去在较复杂的层面上能够完成前面的任务,重点应当是能够用各种数学关系(方程、不等式、函数等)去刻画具体问题,建立合适的数学模型。 第七章 数学推理 思维模式下对推理的理解 哲学对推理的理解为:推理是从一个或几个判断推出一个新的判断的思维形式。常见的推理有归纳推理,演绎推理和类比推理。 推理模式下对推理的理解 对于数学而言,本质上有两种推理模式,一种是演绎推理,一种是归纳推理。 基本推理是指由一个命题或者几个命题出发,得到另一个命题的思维路径,其中所谓的命题是指一种可以肯定或者否定的语句。 推理的基础 一个数学论证过程是由一系列基本推理构成的,讨论基本推理是分析数学论证过程的基础。基本推理中所涉及的基本概念包括语言、命题和定义,其中,语言是推理的工具,命题是推理的对象,定义是命题的基础。 推理的工具:语言 语句是指:表达一个完整思想的语言单位。如果不涉及论证过程,数学上的语句通常以命题的形式出现。 推理的对象:命题 命题是指:或者可以通过分析,或者可以通过经验证实的语句,也就是说,命题是一种可以进行是非判断的语句。 数学命题的核心是叙述研究对象之间的关系,即把关系概念应用于对象概念。数学推理过程中的命题必须简捷准确,不能引发歧义。 命题的基础:定义 准确的定义对于命题的判断是非常重要的,在这个意义上,定义是命题的基础。 数学定义大概分为两种:一种是名义定义,一种是实质定义。所谓名义定义是对某些事物标明符号,或者是对某类事物指明称谓。所谓实质定义是指揭示所研究问题对象内涵的逻辑方法,通过对许多所要研究问题的对象进行具体分析,归纳出共性、抽象出定义。 定义与命题之间的关系:定义的功能是为了明确讨论问题的对象,命题的功能是为了表述所讨论问题的实质,论证的功能是分析条件和结果之间的关系。 数学推理过程中需要把握三个基本原则,即同一律、矛盾律和排中律。 演绎推理的一般含义 我们初步定义数学中的演绎推理为:按照某些规定了的法则所进行的、前提与结论之间有必然联系的推理 。又因为数学的结论大体上可以分为命题结论和运算结论,那么针对数学的演绎推理而言,大体就可以分成两个部分:命题推理和运算推理。 一演绎推理在数学中有多种形式(如联合推理、选言推理、假言推理等),但数学中最常用的是直言三段论式的演绎推理。数学中常称之为“三段论”式的演绎推理。 直言三段论——具有传递关系的推理 三段论是一个包括大前提、小前提和结论三个部分的论证形式,这是一个基本推理的模式。 其基本模式为: 大前提:一切 M 都是(或不是 )P , 小前提: S是M, 结 论: S 是(或不是) P 。 数学的推理与证明过程,就是一连串的三段论式推理的有序组合。 直言三段论的本质是命题的可传递性,或者说,命题所对应的集合之间可以形成包含关系。 这样就可以得到结论:对于数学的推理而言,全称肯定、全称否定、特称否定这三种形式的直言三段论是有效的,也是经常被使用的。 用集合的语言对直言三段论表述如下:直言三段论表述的是集合之间的包含关系,这种关系具有传递性。其中关于“包含关系具有传递性”这个命题,应当是人们在长期的日常生活和生产实践中总结出来的公理,人们从远古的时候就会知道:一个人属于家庭,家庭属于族群,那么,这个人属于族群。这个命题的正确性是不需要证明的,并且,“具有传递性”这个命题应当作为人们可能进行逻辑推理的基础。 归纳推理是由已知为真的命题做前提,引出可能真实命题做结论的推理。 归纳推理的前提与结论之间具有必要条件关系。首先,归纳推理的前提必须是真实的、可靠的,否则,归纳也就失去了意义。前提的真实性对于归纳推理来说是必要的。人们根据考察对象涉及的是某类事物的一部分还是全体,又把具有递推关系的归纳推理分为不完全归纳推理和完全归纳推理。 (一)不完全归纳推理 不完全归纳推理是根据某类事物的部分对象具有的(或不具有)某种属性,推出该事物的全体具有(或不具有)这种属性的思维方式。 (二)完全归纳推理 完全归纳推理是从某类事物每个对象都具有(或不具有)某种属性,推出这类事物的全体具有(或不具有)某种属性的思维方法。由于这类方法考察了某类事物的全部对象,所以得出的结论必定是正确。 1.穷举法 穷举法是数学中常用的一种完全归纳法。它是对具有有限个对象的某类事物进行研究时,把所有的对象的属性分别讨论,从肯定它们都具有某一属性得到这类事物都具有这一属性 (全称判断)的归纳推理。 一个比穷举法更一般的方法被称为简单枚举法 。 2.类分法 在考察中需要先对研究的对象按前提中可能存在的情况进行分类,再按类分别证明。 合情推理 结合中学数学教学实际,谈谈 合情推理在数学上的意义 数学是一个逻辑推理构成的体系,在思维进程的意义上它是从一般到特殊的推理论证。对前提的确认,通过逻辑推理带来对结论的确认,每一步推理都是可靠的、无可置疑的,因而这种逻辑推理确认了逻辑上可靠的数学知识,同时也建立了严格的数学体系。实际上,这种数学的逻辑构造只是数学建构后的表现形式,而在形成这种演绎形式之前,数学的理论必有一个探索发现的过程。这个探索发现的过程作为一种思维方式,作为一种数学发现的方法,是非逻辑演绎的,是一种合乎情理的、似真的推理过程,即合情推理。 作为数学中的创造性思维,它面临的是一个前人没有论证过的问题。因此按照合乎情理的方向,按照自己认为可能是正确的方向去进行推理,探索可能得到的结论,探索可能运用的方法,是合情推理发挥作用的地方。对于一个想把数学作为终身事业的学生而言,它必须学会逻辑论证推理。因为这是他未来的工作,也是数学科学思维发展中的一个特征。数学家为了取得成就,也必须学会合情推理,因为这是他创造性工作赖以进行的那种推理。 作为数学的学习,如果我们要求学生运用自己掌握的数学知识去解决问题,那么作为学生的个体经验,他必然有一个自我形式的合情推理过程,即按照自己认为可能合乎情理、可能正确的方向来试一下,尝试一下自己的方法、想法是否正确。从这种意义上来说,对于数学学习者,对于数学的解题过程而言,合情推理就是一个必须学会运用的思维方式。 合情推理实际上强调了一种思维的主动性、情感性和试错性。所谓主动性是说,合情推理不受数学自身严格演绎推理的束缚,可以向自己认为合乎情理的方向主动思考,尽管这种思考可能与数学本身的要求有差距。所谓情感性是说,合情推理可以按照自己认为似真的方向进行探索。这实际上只是一种探索性的思考,尽管这种思考可能与数学的真正演绎证明有一些差异。所谓试错性是说,合情推理是一个学习、论证的试错过程,正是通过不断的主观积极的试错才使问题得到最终的解决。 数学中合情推理的方式是各式各样的,在这些合情推理中最常用的是类比推理和归纳推理两种。 类比推理是指根据两个不同对象的某些方面相同或相似,推导出或猜出它们在其它方面可能具有相同或相似的思维形式。它是思维进程中由特殊到特殊的推理方式。 波利亚在论及类比合情推理的作用时,认为它可以在三个方面发挥作用:(1)可以提出新问题和获得新发现;(2)可以在求解问题中得到应用;(3)可以用来对猜测进行检验。应当指出的是,类比推理只是一种合情推理,它不能提供严格准确的数学逻辑证明。它获得的结论的正确与否,还必须经过严格的证明。因此类比推理是一种创造性、启发性较强而可靠性较弱的方法。 合情推理中的归纳 合情推理中所说的归纳是归纳推理思维方式中的不完全归纳推理,又称之为经验归纳法或称之为实验归纳法。这是一种从个别到一般,从经验事实或实验事实到理论的一种寻找真理和发现真理的方法。 1.用经验归纳法发现问题的结论 对于数学问题而言,运用经验归纳法可以由一个特殊的事实来猜测可能存在的结论。 2.用经验归纳发现解决数学问题的路径 在经验归纳的合情推理中,可以由一个特殊处理问题的数学公式、数学方法或解题思路中归纳推导出对一般问题的处理公式、方法或思路。 合情推理中,类比推理与归纳推理差异是明显的。归纳推理是从特殊到一般的推理,是一种纵向思维;类比推理则是借助两个系统某些部分的相似性或一致性进行的横向思维。在实际问题中,两种推理形式互相促进,成为合情推理中相互配合、相互利用的重要的数学发现的方法。而作为合情推理,作出创造性思维有时需要不同思维方式的相互配合。 数学猜想——介于归纳与演绎之间 数学猜想,是指人们根据已知的某些数学知识和某些事实,对数学的某些理论、方法等提出一些猜测性的推断。 1.由归纳提出数学猜想 由某类数学对象中的个别对象具有的属性,进而猜想该类对象全体都具有这种属性,这是不完全归纳的基本思维方法。利用不完全归纳的思维方法提出数学猜想是构成创造性思维的一个重要方面。 2.由类比产生的数学猜想 类比是产生数学猜想的一个重要思维方法,许多数学家通过类比获得了一种灵感、一种直觉,进而提出数学猜想。 但是,我们要清楚的知道,一个数学猜想的证明历程并不是容易的事情。 演绎推理与归纳推理的关系 演绎推理的定义:按照某些规定了的法则所进行的、前提与结论之间有必然联系的推理。 归纳推理的定义: 按照某些法则所进行的、前提与结论之间有或然联系的推理。比较可以看到,归纳推理比演绎推理要灵活得多,这是因为:在推理过程中,“法则”是必要的,但不需要事先规定;前提与结果之间的“联系”是必要的,但这种联系是或然的而不是必然的 。正因为归纳推理具有这种灵活性,才可能从事物(事情和实物)的现实出发,对事物的过去或者未来进行推断。虽然通过推断得到的结论不一定是必然的,但却是实用的,因为在日常生活和生产实践中,人们对事情决策所遵循的原则并不要求必然成立,只是希望在大多数情况下成立。 对于数学而言,如果说演绎推理是为了证明的推理,那么归纳推理就是为了推断的推理,把这两种推理模式结合起来,就得到了 数学的推理的全部过程:从条件出发,借助归纳推理“推断”数学结果的可能性,借助演绎推理“验证”数学结果的必然性;或者进行一个相反的推理过程:从结果出发,借助归纳推理“推断”数学条件的可能性,借助演绎推理“验证”数学条件的必要性。 谈谈你 对数学推理教学的理解。 长期以来数学教学注重采用“形式化”的方式,发展学生的演绎推理能力,忽视了合情(归纳)推理能力的培养。数学不仅需要演绎推理,同样、甚至有时更需要合情(归纳)推理。科学结论的发现往往发端于对事物的观察、比较、归纳、类比……,即通过合情(归纳)推理提出猜想,然后再通过演绎推理证明猜想正确或错误。演绎推理和合情(归纳)推理是既不相同又相辅相成的两种推理。 《标准》对推理能力的主要表现作了如下的阐述:“能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例”。这就是说,学生获得数学结论应当经历 合情(归纳) 推理——演绎推理的过程。 合情(归纳) 推理的实质是“发现”,因而关注归纳推理能力的培养有助于发展学生的创新精神。当然,由 合情(归纳) 推理得到的猜想常常需要证实,这就要通过演绎推理给出证明或举出反例,《标准》中对一些公式、法则、定理的证明,也规定了相应的论证的要求。推理能力的培养,必须充分考虑学生的身心特点和认知水平,注意层次性。即使如此,《标准》在“学段目标”的“数学思考”部分的表述中,三个学段仍然有着一定的层次。 培养学生的演绎推理能力不仅要注意层次性,而且要关注学生的差异。要使每一个学生都能体会证明的必要性,从而使学习演绎推理成为学生的自觉要求,克服“为了证明而证明”的盲目性;又要注意推理论证“量”的控制,以及要求的有序、适度。 第八章 数学活动经验 基本活动经验是近年来在《全日制义务教育数学课程标准》的修订过程中提出的新观点、新概念,目前已经变成支撑我国初中数学课程的“四基”之一,即基础知识、基本技能、基本活动经验和基本思想。 “经验”的基本含义 在通常意义下,所谓经验,就是按照事实原样而感知到的内容。《全日制义务教育数学课程标准》(修订稿)指出,“义务教育数学课程的目标在于,获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。”这里的基本活动经验,实际上是指“学生亲自或间接经历了活动过程而获得的经验”。 基本活动经验的含义 是指,围绕特定的数学课程教学目标,学生经历了与数学课程教学内容密切相关的数学活动之后,所留下的、有关数学活动的直接感受、体验和个人感悟。 基本活动经验是经验的一种,由于经验的层次、水平所限,个体之间的数学活动经验有较大差异,即使在同一个活动中,不同的个体所获得的基本活动经验也会有所不同,这往往取决于个体对活动的感知水平与反思能力。 学生的基本活动经验包含三类基本内容: 1 .一种体验性的内容 这种经验成分更多地表现为,学生在经历了活动之后在自己的情感、意志世界所形成的有关数学学科活动的、稳定的心理倾向。 2 .一种方法性内容 即学生获得了这种活动经验之后,积累了开展类似活动的一种或几种基本的方法。这种策略既有方法学知识的意味,更有学生对这些策略、方法的自我诠释、自我解读。它属于典型的 个体知识,而不是作为严格的数学学科知识出现的一般知识。 3 .一种模式性、策略性的内容这种内容与第二类类似,都是在学生获得了这种活动的初步经验之后,经过个人反省而提升出来的、开展类似活动的一种或几种基本模式、基本策略。它仍属于典型的 个体知识。 从哲学上讲,在数学学科教、学中,让学生获得数学的基本活动经验,本质上是让学生获得数学学科直观,这是学生获得数学发展的源泉。无论是作为普适性方法而出现的经验,还是作为模式性、策略性内容出现的经验,都是建立在直接的、感性的经验基础之上,经过个体的自我反省(反思)而形成的,它们带有明显的“再抽象”、再加工痕迹,都是基于个体对活动过程的再现所致。因而,数学学习必须诱发学生主动参与,积极思考,教师的使命和责任在于帮助学生建构其数学理解。 基本活动经验与相关概念的关系 基本活动经验与数学活动、基础知识、基本技能和基本思想的关系 在数学学习中,基本活动经验是对有关数学活动过程的个体反映,是个体针对相关数学活动过程的直接感知及其之上的自我反省的结果。 数学课程教学不仅要教给学生知识,更要帮助学生形成智慧。知识的主要载体是书本,智慧则形成于经验的形成和积累的过程之中,形成于经历的数学活动之中,诸如教师为学生创造的思考的过程、探究的过程、抽象的过程、预测的过程、推理的过程、反思的过程等。智慧形成于学生应用所学的各类知识,发现问题、提出数学问题并加以分析和解决问题的各种教育教学实践活动之中。因而,数学的基本活动经验直接来源于数学活动之中。 在经历同一个数学活动过程之中,不同的人所获得的基本活动经验往往有所不同,往往存在着个体差异。这些差异,一方面来自于个体的感觉、知觉的水平差异,另一方面,这些差异与个体针对感觉、知觉到的内容的自我反省的水平和深广度密切相关。与其同时,这些差异也与个体参与活动的参与程度有着必然的关联。 基本活动经验与活动过程的关系 基本活动经验是对有关数学活动过程的个体反映,是个体针对相关数学活动过程的直接感知及其之上的自我反省的结果。 经历、体验、经验的区别和联系 基本活动经验与经历、体验密切相关,而彼此又有一些区别和关联。 人的经历可以分两种,即直接经历与和间接经历,其中,前者是主体亲身见过、做过或遭遇过某事件的过程而获得的经历,后者是主体从他人处听说或从其他媒介得到他人的经历。 而体验是一种感受经历的过程,是通过主体亲身体验事件发生的过程,从而获得经历,让主体在实践中实现自我领域的充实,感受经历的产生,领悟经历产生的意义,并在反思中进行情感的升华,因而,体验必须从直接经历中得到。 体验具有很强的、个体的情感色彩,停留在经历本身的感性的层面。 经历是为了进行体验,而体验不是目的,是为了获得直接的经验和感受,增强对知识、技能的理解,实现主体在情感、态度、价值观上的升华和发展,同时,能够对知识技能的理解和认识予以强化。然而,并不是所有的体验都会抽象提升为经验,若没有对体验抽象提取,也可能只是将情感升华为信念。主体在情感升华过程中,会和其对事件的原有兴趣进行对比,如果情感升华与原有兴趣一致,那么,其信念将会被强化,反之,则会被弱化。也就是说,体验其实也不是万能的。 基本活动经验的教育价值与基本功能 解基

今天教务老师给大家收集整理了自考高等数学基础教材,自考大专高等数学难吗没有高中基础的相关问题解答,还有免费的自考历年真题及自考复习重点资料下载哦,以下是全国我们为自考生们整理的一些回答,希望对你考试有帮助!自考高数一需要用到哪些高中知识?主要需要高中的函数知识。其一是在共有知识内容方面,同一章中要求掌握的知识点,或同一知识点要求掌握的程度不尽相同。如在一元函数微分学中,《高等数学》(一)要求掌握求反函数的导数、掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,理解罗尔定理、拉格朗日中值定理,但上述知识点对《高等数学》(二)并不做要求;又如在一元函数积分学中,《高等数学》(一)要求掌握三角换元求不定积分,其中包括正弦变换、正切变换和正割变换,而《高等数学》(二)对正割变换不做考核要求。其二是在不同的知识内容方面,《高等数学》(一)考核内容中有二重积分,而《高等数学》(二)对二重积分并不做考核要求;再有《高等数学》(一)有无穷级数、常微分方程,高数(二)均不做要求。从试卷中可以看出,高等数学(一)比《高等数学》(二)多出来的这部分知识点,在考题中大约能占到30%的比例。共计45分左右。所以理科、工科类考生应按照《大纲》的要求全面认真复习。学习自学考试高等数学工专教材需要哪些高中知识?你学的内容一到五章基本上是高数一的,高数一最主要的就是微积分跟函数极限所以你要学函数,数列,不等式,三角函数,这些是为极限与导数打基础,所以极限与导数很重要,虽然是选修的,线性代数只是一种算法,你直接拿来看就能懂了,跟以前的知识关系不大,我们学线性代数是专门一本书的,高数二才要学圆以及几何那些,但是从你提到的内容来看,你不学这个,所以就不用学那些几何了我简单看了一下这本高等数学工专教材,详细地介绍了极限的基础和导数的概念,因此极限和导数是不是可以直接从这本高数工专教材上学习。另外,直线和圆的方程,圆锥曲线方程这两部分内容挺多的,又貌似很重要,真的如你所说不用学吗。我是针对你说的内容来为你解答的,你说的没涉及几何那方面,就是你说的圆锥这些。毫无疑问,这些确实是很重要,而且在高数下册当中,很大篇幅说这个的。不过你说的内容没涉及,所以我就没说高等数学教材(急需)请问经济类高等数学教材较好的有什么?帮帮忙,如果你不是考研的话,用中国人民大学出版社的高等数学,共三册,内容相对较易。但如果你是考研的话,我推荐同济大学版的,一般考研都以它为主要教材,但与实际经济问题联系不够,偏重理工方面,较难;而第一个推荐则是很好地与实际经济问题相联系。我是某重点大学经济类专业的学生,我们用的教材是人大版的,但如果我们有心考研则自学同济大学版的。这是我的见解,希望帮到你!自考高等数学怎么讲您好高数有一定的难度但不是特别难我之前考过我考的时候是学校出来好多年才考的以前的都忘光了所以也相当于零基础考高数你以下几点得注意一,公式得会背公式不会背没法做题,百分百不会过二,概念得清楚,这样拿到题,求什么,怎么求就有数了三,书上例题得搞明白,因为自考的考题跟书上的都是差不多的,四,有空多练练,只有练得多,拿到题才知道从何入手,要不然,拿到一道题感觉就蒙了,不知道从何入手如果你按以上做,都做得好过关肯定不是问题加油.自考/成考有疑问、不知道自考/成考考点内容、不清楚当地自考/成考政策,点击底部咨询官网老师,免费领取复习资料:

重点在三方面:一、函数与反函数的关系: (Function and Inverse Function) 以前我们学过的相反运算有: 加<------->减; 乘<------->除; 平方<----->开方; 指数<----->对数; 三角<----->反三角。 微积分(Calculus)学新的相反运算关系: 微分<----->积分 (Differentiation<----->Integration)二、解析几何: (Coordinate / Analytical Geometry) 微积分就是解析几何的直接延伸,如果 解析几何很糟,微积分是学不好的。三、极限(Limit): 极限是从初等数学到高等数学之间的过渡, 好好理解一些极限题目,对学微积分很有 帮助,它将有限计算的思想过渡到无限的 思想,这部分学好了,对微积分的精髓就 容易学了。不过一般的人很难过渡,即使 学过了微积分,很多人并没有掌握微积分 的实质思想方法。这一部分不要花太多的 时间,因为,有些极限的进一步理解,要 在学过一部分的微积分后才能进一步理解。四、楼主所说的“一元一次方程”,可以当成 代数在学,也可以当成解析几何来学,这 是最简单的内容,最最起码的要求。五、楼主可以从极限开始,利用假期,你会突 然发现你的思想突然上了高高的一层,自 豪感、自信心,就会空前提高。六、如果有必要,请联络本人,本人可以提供 大量的极限、微分、积分的练习与义务讲 解。试题立等可取。七、如果楼主英文有一点基础,有一点信心或 兴趣,本人建议数学跟英文一起学,很快 您的英文运用能力会急剧提高,你就会有 “一览众山小”的豪迈气派。若有兴趣, 本人可以提供数理化英的综合义务辅导。 方式可以借助于百度平台。

自学考试数学基础知识点总结

没有多少教学经验,所以说说自己的想法,尽最大所能,给您帮助.1 世上无难事.愿意下功夫,都能学会.2 小学数学到高数是一个比较漫长的数学思维方式的培养.花多少年功夫能从零到高数,很少有人研究过吧.3 对大多数人来讲,学习是一个枯燥的过程,需要坚持.学数学是一时冲动,还是一个决心.4 有没有必要从零学数学。需要用到高数,那么你的年龄应该至少成年.成长到成年,大部分人应该有自己的优势项目,结合自己的优势,来选择努力方向,可能更实际一些.如果已经决定学数学,我把印象中的知识点,罗列如下:小学数学:识数;正整数、小数、分数的加、减、乘、除四则运算;三角形,梯形,矩形,圆的面积,周长计算。把现实中的问题转化成算式的能力;初中数学:实数、未知数、用字母表示的数的加、减、乘、除四则运算;解方程;应用题转方程;角、圆的性质和定理;勾股定理、平行线的性质和判定定理;简单函数和不等式。高中数学:集合、函数、反函数、三角函数的各种运算;复数及相关运算;排列组合;数列;简单概率;不等式;参数方程;点、线、面上的一些知识和运算。高等数学:极限,导数,微分,积分。连续、可导、可微的性质和判别。洛必达法则;第一第二间断点;极值;中值定理;级数。学习的方法:1 弄清各阶段的知识结构,就是讲了几个问题,各问题间的联系是什么样的。弄清各种概念是什么,有哪些性质,有哪些运算,怎么应用题转化算式;2 通过各种途径学习。先看视频教程,再看书,再练习题,不懂的问,现实中用。3 合理规划时间,注意学习的进度。不要学太快,知识掌握了,沉淀了,积累了,再往下继续。每学期的课也就主要弄懂几个问题而已。4 想办法、找帮助来调节自己的心情。心情愉悦的学习、学习时有乐趣,学习的效率才能高。5 坚持再坚持,不要半途而废。

1肯定是三角函数的转换 在积分中会运用。2求导,也就是高数中的微分3向量4概率在高中学到的,大学是概率论5极限(当然 高中只是学的浅显的内容,大学的高等数学难太多)

09293初中数学学科基础

09293初中数学学科基础|全国2017年4月自考09293初中数学学科基础试题.pdf|全国2016年4月自考09293初中数学学科基础试题.pdf|全国2015年4月自考09293初中数学学科基础试题.pdf|全国2014年4月高等教育自学考试初中数学学科基础试题课程代码:09293.doc

为形式化公理方法。 公理体系的合理性和公理化方法提出三个基本的要求: (1)协调性要求。 (2)独立性要求。(3)完备性要求。 (二)几何的统一化 F· 克莱因是近代数学史中非常有名的数学家,他的重要贡献之一,就是透过数学结构的方法为众多几何学分支找到一种内在的结构规律。 表面互不相干的几何学被 F·克莱因用变换群联系到一起,同时变换群的任何一个分类也对应几何学的一种分类。 F· 克莱因用群的结构与理论统一几何学的方法,是抽象结构方法的重要成就,是数学第二次抽象威力的具体体现。。 模型模式的抽象 粗略地说,数学模型是针对或参照某种事物系统的特征或数量关系,采用形式化数学语言,概括地或近似地表述出来的一种数学建构。所谓数学建构,是指使用数学概念、数学符号、数学语言等表述出来的被研究对象的纯关系结构。“纯”是指已扬弃了一切与关系无本质联系的属性,只保留与研究目的有关的本质特征。 具体地说,数学模型有广义的解释和狭义的解释。 (一)广义解释 数学模型是从现实世界中抽象出来的,是客观事物的某些属性的一种近似反映。(二)狭义解释 数学模型是将具体属性抽象出来构成一种特定的数学关系结构,只有那些反映特定问题或特定事物系统的数学结构才叫数学模型。 数学模型的抽象过程 具体的抽象过程我们可以总结为如下几个关键步骤: 首先,分析问题的各种关系,全面地掌握了问题中各种因素之间的联系。其次,确定了各关系之间的本质属性。 第三,建立一笔画的数学模型,第四,把数学模型返回到实际问题之中。检验正确,那么这个抽象的数学模型就可以广泛地加以应用。 中小学数学常见数学模型的抽象 (一)经济数学模型的抽象 在人类的生产生活中,有许多实际问题可以用初等数学来解决,对这些具体问题的抽象处理就形成了许多有关这些方面的数学模型。这些问题主要表现在工程进度、人口增长、收入变等方面。这些问题运用的数学工具大多是代数方程、指数函数以及其它相关的函数概念。这一类的数学模型在现实生活中随处可见,中小学的数学教学应以这些为例深入浅出地抽象、构造及运用这些模型。 (二)运动数学模型的抽象 一些事物在运动中表现出速度、加速度、时间、距离之间的关系,这类问题构成了带有运动特征的数学模型。 (三)逻辑程序数学模型的抽象 逻辑推理形式一直是数学运用的最基本的思想方法,从数学模型的抽象角度把它看作是一种数学方法和结构模型还是近代才引起人们重视的。对于初等数学教育而言,我们以前的数学教育只是在学习几何知识时才开始强化逻辑推理方面的教育,这种数学教育也由于对定义、定理的推导而忽视对逻辑程序自身的注意。近年来,由于计算机的迅速普及使得逻辑程序方面(或算法)的教育就显得越来越重要。 结合初中教学实际谈一谈你 对数学抽象的理解。 数学抽象的教学应当直接指向学生在与数学相关问题上的一般思维水平方面的发展。事实上,义务教育阶段的数学教育是一种公民教育,它给学生带去的绝不仅仅是会解更多的数学题了。这些学生的未来会遇到不同的挑战——一些人需要学习或研究更多的数学,对他们而言,是否能够“思考数学”非常重要;另一些人(他们是受教育的学生中的绝大多数)就业以后基本上不需要解纯粹的数学题(除了参加数学考试),对他们而言,“思考数学”是一种需要,但更多的或许是能够进行“数学的思考”,即在面临各种问题情境(特别是非数学问题)时,能够从数学的角度去思考问题、能够发现其中所存在的数学现象、并将之抽象为数学问题,运用数学的知识与方法去解决问题。对所有的未来公民来说,抽象思维和形象思维水平,归纳推理与演绎推理能力等都是不可缺少的。 这个教学目标的实现也不能仅仅通过研究“纯粹抽象”的数学现象来进行,而应当在研究多种现象与问题(数学的、非数学的)的过程中逐步完成。具体说来,就是让学生经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展数学抽象思维。 教学的主要目的在于使学生能够用数学的语言去刻画现实世界,去发现隐藏在具体事物背后的一般性规律。相对于不同学段的学生而言着重点不一样: 对第一学段的学生来说,能够用数和简单的图表刻画一些现实生活中的简单现象,就是目标;对第二学段的学生而言,应当包括既能够用数和简单的图表刻画一些现实生活中的现象,还应当包含对某些数字信息做出合理的解释;对于第三学段的学生来说,除去在较复杂的层面上能够完成前面的任务,重点应当是能够用各种数学关系(方程、不等式、函数等)去刻画具体问题,建立合适的数学模型。 第七章 数学推理 思维模式下对推理的理解 哲学对推理的理解为:推理是从一个或几个判断推出一个新的判断的思维形式。常见的推理有归纳推理,演绎推理和类比推理。 推理模式下对推理的理解 对于数学而言,本质上有两种推理模式,一种是演绎推理,一种是归纳推理。 基本推理是指由一个命题或者几个命题出发,得到另一个命题的思维路径,其中所谓的命题是指一种可以肯定或者否定的语句。 推理的基础 一个数学论证过程是由一系列基本推理构成的,讨论基本推理是分析数学论证过程的基础。基本推理中所涉及的基本概念包括语言、命题和定义,其中,语言是推理的工具,命题是推理的对象,定义是命题的基础。 推理的工具:语言 语句是指:表达一个完整思想的语言单位。如果不涉及论证过程,数学上的语句通常以命题的形式出现。 推理的对象:命题 命题是指:或者可以通过分析,或者可以通过经验证实的语句,也就是说,命题是一种可以进行是非判断的语句。 数学命题的核心是叙述研究对象之间的关系,即把关系概念应用于对象概念。数学推理过程中的命题必须简捷准确,不能引发歧义。 命题的基础:定义 准确的定义对于命题的判断是非常重要的,在这个意义上,定义是命题的基础。 数学定义大概分为两种:一种是名义定义,一种是实质定义。所谓名义定义是对某些事物标明符号,或者是对某类事物指明称谓。所谓实质定义是指揭示所研究问题对象内涵的逻辑方法,通过对许多所要研究问题的对象进行具体分析,归纳出共性、抽象出定义。 定义与命题之间的关系:定义的功能是为了明确讨论问题的对象,命题的功能是为了表述所讨论问题的实质,论证的功能是分析条件和结果之间的关系。 数学推理过程中需要把握三个基本原则,即同一律、矛盾律和排中律。 演绎推理的一般含义 我们初步定义数学中的演绎推理为:按照某些规定了的法则所进行的、前提与结论之间有必然联系的推理 。又因为数学的结论大体上可以分为命题结论和运算结论,那么针对数学的演绎推理而言,大体就可以分成两个部分:命题推理和运算推理。 一演绎推理在数学中有多种形式(如联合推理、选言推理、假言推理等),但数学中最常用的是直言三段论式的演绎推理。数学中常称之为“三段论”式的演绎推理。 直言三段论——具有传递关系的推理 三段论是一个包括大前提、小前提和结论三个部分的论证形式,这是一个基本推理的模式。 其基本模式为: 大前提:一切 M 都是(或不是 )P , 小前提: S是M, 结 论: S 是(或不是) P 。 数学的推理与证明过程,就是一连串的三段论式推理的有序组合。 直言三段论的本质是命题的可传递性,或者说,命题所对应的集合之间可以形成包含关系。 这样就可以得到结论:对于数学的推理而言,全称肯定、全称否定、特称否定这三种形式的直言三段论是有效的,也是经常被使用的。 用集合的语言对直言三段论表述如下:直言三段论表述的是集合之间的包含关系,这种关系具有传递性。其中关于“包含关系具有传递性”这个命题,应当是人们在长期的日常生活和生产实践中总结出来的公理,人们从远古的时候就会知道:一个人属于家庭,家庭属于族群,那么,这个人属于族群。这个命题的正确性是不需要证明的,并且,“具有传递性”这个命题应当作为人们可能进行逻辑推理的基础。 归纳推理是由已知为真的命题做前提,引出可能真实命题做结论的推理。 归纳推理的前提与结论之间具有必要条件关系。首先,归纳推理的前提必须是真实的、可靠的,否则,归纳也就失去了意义。前提的真实性对于归纳推理来说是必要的。人们根据考察对象涉及的是某类事物的一部分还是全体,又把具有递推关系的归纳推理分为不完全归纳推理和完全归纳推理。 (一)不完全归纳推理 不完全归纳推理是根据某类事物的部分对象具有的(或不具有)某种属性,推出该事物的全体具有(或不具有)这种属性的思维方式。 (二)完全归纳推理 完全归纳推理是从某类事物每个对象都具有(或不具有)某种属性,推出这类事物的全体具有(或不具有)某种属性的思维方法。由于这类方法考察了某类事物的全部对象,所以得出的结论必定是正确。 1.穷举法 穷举法是数学中常用的一种完全归纳法。它是对具有有限个对象的某类事物进行研究时,把所有的对象的属性分别讨论,从肯定它们都具有某一属性得到这类事物都具有这一属性 (全称判断)的归纳推理。 一个比穷举法更一般的方法被称为简单枚举法 。 2.类分法 在考察中需要先对研究的对象按前提中可能存在的情况进行分类,再按类分别证明。 合情推理 结合中学数学教学实际,谈谈 合情推理在数学上的意义 数学是一个逻辑推理构成的体系,在思维进程的意义上它是从一般到特殊的推理论证。对前提的确认,通过逻辑推理带来对结论的确认,每一步推理都是可靠的、无可置疑的,因而这种逻辑推理确认了逻辑上可靠的数学知识,同时也建立了严格的数学体系。实际上,这种数学的逻辑构造只是数学建构后的表现形式,而在形成这种演绎形式之前,数学的理论必有一个探索发现的过程。这个探索发现的过程作为一种思维方式,作为一种数学发现的方法,是非逻辑演绎的,是一种合乎情理的、似真的推理过程,即合情推理。 作为数学中的创造性思维,它面临的是一个前人没有论证过的问题。因此按照合乎情理的方向,按照自己认为可能是正确的方向去进行推理,探索可能得到的结论,探索可能运用的方法,是合情推理发挥作用的地方。对于一个想把数学作为终身事业的学生而言,它必须学会逻辑论证推理。因为这是他未来的工作,也是数学科学思维发展中的一个特征。数学家为了取得成就,也必须学会合情推理,因为这是他创造性工作赖以进行的那种推理。 作为数学的学习,如果我们要求学生运用自己掌握的数学知识去解决问题,那么作为学生的个体经验,他必然有一个自我形式的合情推理过程,即按照自己认为可能合乎情理、可能正确的方向来试一下,尝试一下自己的方法、想法是否正确。从这种意义上来说,对于数学学习者,对于数学的解题过程而言,合情推理就是一个必须学会运用的思维方式。 合情推理实际上强调了一种思维的主动性、情感性和试错性。所谓主动性是说,合情推理不受数学自身严格演绎推理的束缚,可以向自己认为合乎情理的方向主动思考,尽管这种思考可能与数学本身的要求有差距。所谓情感性是说,合情推理可以按照自己认为似真的方向进行探索。这实际上只是一种探索性的思考,尽管这种思考可能与数学的真正演绎证明有一些差异。所谓试错性是说,合情推理是一个学习、论证的试错过程,正是通过不断的主观积极的试错才使问题得到最终的解决。 数学中合情推理的方式是各式各样的,在这些合情推理中最常用的是类比推理和归纳推理两种。 类比推理是指根据两个不同对象的某些方面相同或相似,推导出或猜出它们在其它方面可能具有相同或相似的思维形式。它是思维进程中由特殊到特殊的推理方式。 波利亚在论及类比合情推理的作用时,认为它可以在三个方面发挥作用:(1)可以提出新问题和获得新发现;(2)可以在求解问题中得到应用;(3)可以用来对猜测进行检验。应当指出的是,类比推理只是一种合情推理,它不能提供严格准确的数学逻辑证明。它获得的结论的正确与否,还必须经过严格的证明。因此类比推理是一种创造性、启发性较强而可靠性较弱的方法。 合情推理中的归纳 合情推理中所说的归纳是归纳推理思维方式中的不完全归纳推理,又称之为经验归纳法或称之为实验归纳法。这是一种从个别到一般,从经验事实或实验事实到理论的一种寻找真理和发现真理的方法。 1.用经验归纳法发现问题的结论 对于数学问题而言,运用经验归纳法可以由一个特殊的事实来猜测可能存在的结论。 2.用经验归纳发现解决数学问题的路径 在经验归纳的合情推理中,可以由一个特殊处理问题的数学公式、数学方法或解题思路中归纳推导出对一般问题的处理公式、方法或思路。 合情推理中,类比推理与归纳推理差异是明显的。归纳推理是从特殊到一般的推理,是一种纵向思维;类比推理则是借助两个系统某些部分的相似性或一致性进行的横向思维。在实际问题中,两种推理形式互相促进,成为合情推理中相互配合、相互利用的重要的数学发现的方法。而作为合情推理,作出创造性思维有时需要不同思维方式的相互配合。 数学猜想——介于归纳与演绎之间 数学猜想,是指人们根据已知的某些数学知识和某些事实,对数学的某些理论、方法等提出一些猜测性的推断。 1.由归纳提出数学猜想 由某类数学对象中的个别对象具有的属性,进而猜想该类对象全体都具有这种属性,这是不完全归纳的基本思维方法。利用不完全归纳的思维方法提出数学猜想是构成创造性思维的一个重要方面。 2.由类比产生的数学猜想 类比是产生数学猜想的一个重要思维方法,许多数学家通过类比获得了一种灵感、一种直觉,进而提出数学猜想。 但是,我们要清楚的知道,一个数学猜想的证明历程并不是容易的事情。 演绎推理与归纳推理的关系 演绎推理的定义:按照某些规定了的法则所进行的、前提与结论之间有必然联系的推理。 归纳推理的定义: 按照某些法则所进行的、前提与结论之间有或然联系的推理。比较可以看到,归纳推理比演绎推理要灵活得多,这是因为:在推理过程中,“法则”是必要的,但不需要事先规定;前提与结果之间的“联系”是必要的,但这种联系是或然的而不是必然的 。正因为归纳推理具有这种灵活性,才可能从事物(事情和实物)的现实出发,对事物的过去或者未来进行推断。虽然通过推断得到的结论不一定是必然的,但却是实用的,因为在日常生活和生产实践中,人们对事情决策所遵循的原则并不要求必然成立,只是希望在大多数情况下成立。 对于数学而言,如果说演绎推理是为了证明的推理,那么归纳推理就是为了推断的推理,把这两种推理模式结合起来,就得到了 数学的推理的全部过程:从条件出发,借助归纳推理“推断”数学结果的可能性,借助演绎推理“验证”数学结果的必然性;或者进行一个相反的推理过程:从结果出发,借助归纳推理“推断”数学条件的可能性,借助演绎推理“验证”数学条件的必要性。 谈谈你 对数学推理教学的理解。 长期以来数学教学注重采用“形式化”的方式,发展学生的演绎推理能力,忽视了合情(归纳)推理能力的培养。数学不仅需要演绎推理,同样、甚至有时更需要合情(归纳)推理。科学结论的发现往往发端于对事物的观察、比较、归纳、类比……,即通过合情(归纳)推理提出猜想,然后再通过演绎推理证明猜想正确或错误。演绎推理和合情(归纳)推理是既不相同又相辅相成的两种推理。 《标准》对推理能力的主要表现作了如下的阐述:“能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例”。这就是说,学生获得数学结论应当经历 合情(归纳) 推理——演绎推理的过程。 合情(归纳) 推理的实质是“发现”,因而关注归纳推理能力的培养有助于发展学生的创新精神。当然,由 合情(归纳) 推理得到的猜想常常需要证实,这就要通过演绎推理给出证明或举出反例,《标准》中对一些公式、法则、定理的证明,也规定了相应的论证的要求。推理能力的培养,必须充分考虑学生的身心特点和认知水平,注意层次性。即使如此,《标准》在“学段目标”的“数学思考”部分的表述中,三个学段仍然有着一定的层次。 培养学生的演绎推理能力不仅要注意层次性,而且要关注学生的差异。要使每一个学生都能体会证明的必要性,从而使学习演绎推理成为学生的自觉要求,克服“为了证明而证明”的盲目性;又要注意推理论证“量”的控制,以及要求的有序、适度。 第八章 数学活动经验 基本活动经验是近年来在《全日制义务教育数学课程标准》的修订过程中提出的新观点、新概念,目前已经变成支撑我国初中数学课程的“四基”之一,即基础知识、基本技能、基本活动经验和基本思想。 “经验”的基本含义 在通常意义下,所谓经验,就是按照事实原样而感知到的内容。《全日制义务教育数学课程标准》(修订稿)指出,“义务教育数学课程的目标在于,获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。”这里的基本活动经验,实际上是指“学生亲自或间接经历了活动过程而获得的经验”。 基本活动经验的含义 是指,围绕特定的数学课程教学目标,学生经历了与数学课程教学内容密切相关的数学活动之后,所留下的、有关数学活动的直接感受、体验和个人感悟。 基本活动经验是经验的一种,由于经验的层次、水平所限,个体之间的数学活动经验有较大差异,即使在同一个活动中,不同的个体所获得的基本活动经验也会有所不同,这往往取决于个体对活动的感知水平与反思能力。 学生的基本活动经验包含三类基本内容: 1 .一种体验性的内容 这种经验成分更多地表现为,学生在经历了活动之后在自己的情感、意志世界所形成的有关数学学科活动的、稳定的心理倾向。 2 .一种方法性内容 即学生获得了这种活动经验之后,积累了开展类似活动的一种或几种基本的方法。这种策略既有方法学知识的意味,更有学生对这些策略、方法的自我诠释、自我解读。它属于典型的 个体知识,而不是作为严格的数学学科知识出现的一般知识。 3 .一种模式性、策略性的内容这种内容与第二类类似,都是在学生获得了这种活动的初步经验之后,经过个人反省而提升出来的、开展类似活动的一种或几种基本模式、基本策略。它仍属于典型的 个体知识。 从哲学上讲,在数学学科教、学中,让学生获得数学的基本活动经验,本质上是让学生获得数学学科直观,这是学生获得数学发展的源泉。无论是作为普适性方法而出现的经验,还是作为模式性、策略性内容出现的经验,都是建立在直接的、感性的经验基础之上,经过个体的自我反省(反思)而形成的,它们带有明显的“再抽象”、再加工痕迹,都是基于个体对活动过程的再现所致。因而,数学学习必须诱发学生主动参与,积极思考,教师的使命和责任在于帮助学生建构其数学理解。 基本活动经验与相关概念的关系 基本活动经验与数学活动、基础知识、基本技能和基本思想的关系 在数学学习中,基本活动经验是对有关数学活动过程的个体反映,是个体针对相关数学活动过程的直接感知及其之上的自我反省的结果。 数学课程教学不仅要教给学生知识,更要帮助学生形成智慧。知识的主要载体是书本,智慧则形成于经验的形成和积累的过程之中,形成于经历的数学活动之中,诸如教师为学生创造的思考的过程、探究的过程、抽象的过程、预测的过程、推理的过程、反思的过程等。智慧形成于学生应用所学的各类知识,发现问题、提出数学问题并加以分析和解决问题的各种教育教学实践活动之中。因而,数学的基本活动经验直接来源于数学活动之中。 在经历同一个数学活动过程之中,不同的人所获得的基本活动经验往往有所不同,往往存在着个体差异。这些差异,一方面来自于个体的感觉、知觉的水平差异,另一方面,这些差异与个体针对感觉、知觉到的内容的自我反省的水平和深广度密切相关。与其同时,这些差异也与个体参与活动的参与程度有着必然的关联。 基本活动经验与活动过程的关系 基本活动经验是对有关数学活动过程的个体反映,是个体针对相关数学活动过程的直接感知及其之上的自我反省的结果。 经历、体验、经验的区别和联系 基本活动经验与经历、体验密切相关,而彼此又有一些区别和关联。 人的经历可以分两种,即直接经历与和间接经历,其中,前者是主体亲身见过、做过或遭遇过某事件的过程而获得的经历,后者是主体从他人处听说或从其他媒介得到他人的经历。 而体验是一种感受经历的过程,是通过主体亲身体验事件发生的过程,从而获得经历,让主体在实践中实现自我领域的充实,感受经历的产生,领悟经历产生的意义,并在反思中进行情感的升华,因而,体验必须从直接经历中得到。 体验具有很强的、个体的情感色彩,停留在经历本身的感性的层面。 经历是为了进行体验,而体验不是目的,是为了获得直接的经验和感受,增强对知识、技能的理解,实现主体在情感、态度、价值观上的升华和发展,同时,能够对知识技能的理解和认识予以强化。然而,并不是所有的体验都会抽象提升为经验,若没有对体验抽象提取,也可能只是将情感升华为信念。主体在情感升华过程中,会和其对事件的原有兴趣进行对比,如果情感升华与原有兴趣一致,那么,其信念将会被强化,反之,则会被弱化。也就是说,体验其实也不是万能的。 基本活动经验的教育价值与基本功能 解基

自考数学基础知识点归纳总结

高考数学知识点总结:集合知识点汇总 一.知识归纳: 1.集合的有关概念。 1)集合(集):某些指定的对象集在一起就成为一个集合(集).其中每一个对象叫元素 注意:①集合与集合的元素是两个不同的概念,教科书中是通过描述给出的,这与平面几何中的点与直线的概念类似。 ②集合中的元素具有确定性(a?A和a?A,二者必居其一)、互异性(若a?A,b?A,则a≠b)和无序性({a,b}与{b,a}表示同一个集合)。 ③集合具有两方面的意义,即:凡是符合条件的对象都是它的元素;只要是它的元素就必须符号条件 2)集合的表示方法:常用的有列举法、描述法和图文法3)集合的分类:有限集,无限集,空集。 4)常用数集:N,Z,Q,R,N. 2.子集、交集、并集、补集、空集、全集等概念。 1)子集:若对x∈A都有x∈B,则A B(或A B); 2)真子集:A B且存在x0∈B但x0 A;记为A B(或,且 ) 3)交集:A∩B={x| x∈A且x∈B} 4)并集:A∪B={x| x∈A或x∈B} 5)补集:CUA={x| x A但x∈U} 注意:①? A,若A≠?,则? A ; ②若, ,则 ; ③若且 ,则A=B(等集) 3.弄清集合与元素、集合与集合的关系,掌握有关的术语和符号,特别要注意以下的符号:(1) 与、?的区别;(2) 与 的区别;(3) 与的区别。 4.有关子集的几个等价关系 ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB; ④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。 高考数学必修三复习知识点 数列是高中数学的重要内容,又是学习高等数学的基础。高考对本章的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列等比数列,求极限和数学归纳法综合在一起。 探索性问题是高考的热点,常在数列解答题中出现。本章中还蕴含着丰富的数学思想,在主观题中着重考查函数与方程、转化与化归、分类讨论等重要思想,以及配方法、换元法、待定系数法等基本数学方法。 近几年来,高考关于数列方面的命题主要有以下三个方面; (1)数列本身的有关知识,其中有等差数列与等比数列的概念、性质、通项公式及求和公式。 (2)数列与其它知识的结合,其中有数列与函数、方程、不等式、三角、几何的结合。 (3)数列的应用问题,其中主要是以增长率问题为主。试题的难度有三个层次,小题大都以基础题为主,解答题大都以基础题和中档题为主,只有个别地方用数列与几何的综合与函数、不等式的综合作为最后一题难度较大。 1.在掌握等差数列等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题; 2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力, 进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。 高考高三数学必修三复习知识点 1.定义: 用符号〉,=,〈号连接的式子叫不等式。 2.性质: ①不等式的两边都加上或减去同一个整式,不等号方向不变。 (一)、高考数学知识点总结及公式大全 (二)、高考数学不好可以报数学师范吗 (三)、高考数学好可以报什么专业 (四)、高考数学造句,用高考数学造句 (五)、宁夏高考最高分是谁,2022年宁夏高考状元名单分数学校 (六)、内蒙古高考最高分是谁,2022年内蒙古高考状元名单分数学校 (七)、西藏高考最高分是谁,2022年西藏高考状元名单分数学校 (八)、新疆高考最高分是谁,2022年新疆高考状元名单分数学校 (九)、河南高考最高分是谁,2022年河南高考状元名单分数学校 (十)、贵州高考最高分是谁,2022年贵州高考状元名单分数学校 ②不等式的两边都乘以或者除以一个正数,不等号方向不变。 ③不等式的两边都乘以或除以同一个负数,不等号方向相反。 3.分类: ①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。 ②一元一次不等式组: a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。 b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。 ;

我现在带初三数学,课本讲授已经结束,进入总复习阶段,把平常教学中的一些思想说说,主要谈谈归纳总结。归纳是思维形式重要的一种,属抽象思维。众所周知知识有感性与理性之区分,在认知能力上同样有感知与理智之区别,比如小的时候,我们以感性知识接受为主,我们通常也用一些感知的学习方式接受知识,就是用机械的死记硬背方法,但是学习成绩也不会很差。可是到了中学,大部分的知识属于理性知识,假如你仍然用感性的死记方法,这当然是行不通的。那么学会学习的核心内容就是学会思维。由此,学会分析与归纳就是要改变原来的学习方式。为了引起我们的重视,特意把归纳学习法也作为十大学习法之一。所说的归纳学习法就是通过归纳思维,形成对知识的特点、中心、性质的识记、理解与运用。当然,把它当成一种学习方法来说,归纳学习法主要靠归纳思维,它主要把分析作为前提,但它与归纳思维本身是不等同的。由此可见,归纳学习法指的是要善于去归纳事物的特点、性质,把握句子、段落的精神实质,同时,以归纳为基础,搜索相同、相近、相反的知识放在一起进行识记与理解。其主要的优点就是能起到更快地记忆、理解作用,其实对于我,在讲课中也用这样的方法。我们举例说明。

一、我们学习了相似后,利用相似原理测物高

主要分几种情况:利用太阳光,因为在同一时刻,同一地点,太阳光线与地面的夹角相同,可以得到两个相似的三角形,我们可以测物高。主要方法有:

①测量示意图;②立标杆法;③海岛算经法;④镜子反射法。

二、我们学习完锐角三角函数后,利用解直角三角形可以测物高

主要分如下几种情况:

①如图,小明欲利用测角仪测量树的高度。已知他离树的水平距离bc为10m,测角仪的高度cd为1.5m,测得树顶a的仰角为33°,求树的高度ab。

要求学生能借助仰角构造直角三角形并解直角三角形

②如图为了测量停留在空中的气球的高度,小明先站在地面上某点观测气球,测得仰角为30°,然后他向气球方向前进了50m,此时观测气球,测得仰角为45°。若小明的眼睛离地面1.6m,小明如何计算气球的高度呢?

③热气球的探测器显示,从热气球看一栋高楼顶部的仰角为60°,看这栋高楼底部的俯角为30°,热气球与高楼的水平距离为66 m,这栋高楼有多高?

④线段ab,dc分别表示甲、乙两建筑物的高。某初三课外兴趣活动小组为了测量两建筑物的高,用自制测角仪在b处测得d点的仰角为α,在a处测得d点的仰角为β.已知甲、乙两建筑物之间的距离bc为m.请你通过计算用含α、β、m的式子分别表示出甲、乙两建筑物的高度,借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形是解题关键。

⑤在河边的一点a测得河对岸小山顶上一座铁塔的塔顶c的仰角为66°、塔底b的仰角为60°,已知铁塔的高度bc为20m(如图),你能根据以上数据求出小山的高bd吗?若不能,请说明理由;若能,请求出小山的高bd。(精确到0.1m)

归纳总结的过程是研究发现知识内部规律和与外部联系的过程,说白了也就是“悟”的过程。在学习时假如能养成随时随地归纳总结的好习惯,提高学习效率和学习成绩是相当快的。好多学生的学习成绩达到一定程度,无论怎样努力学习,成绩就是那么多,再也上不去了,有一些根本原因就是不会去总结归纳,或者说在学习时落掉了这个很重要的学习环节。以上是对测物高的一个总结,拿它为例说说如何归纳总结,在这些解题中,应用了方程思想、转化思想、数形结合思想还有分类讨论思想。由此也说说我个人看法,在平常的教学复习当中,把思想方法贯穿在整个教学过程,在解题训练过程中引导学生以数学思想为主线,并进行知识点概括与归纳整理时,从不同角度、不同问题、不同内容、不同方法中来寻找同一思想。章节复习时,特别强调,在对知识复习的同时,把统领知识的思想方法概括出来,增加学生对数学思想方法的应用意识,从而有利于学生更透彻地理解所学知识,提高独立分析、解决问题的能力。每章每节的知识是孤立的、分散的,要把它们形成一个知识体系,每天课后必须有小结。对所学知识要有一个概括,必须掌握关键在哪和重点知识。对比易混淆的概念,并理解它们。比如我现在初三总复习了,学习一个专题时,要把各章中分散的知识点连成线、辅以面、结成网,使学到的知识规律化、系统化、结构化,运用起来才能联想畅通,思维活跃。一个善于学习的人,首先是一个喜欢思考的人,是一个善于不断归纳总结的人。越是善于归纳总结,大脑中储存的知识就越丰富越系统。由此,学习过程中一个非常重要环节就是归纳总结。

自考数学基础知识点总结大全

各种数学符号的出现,是为了让计算一目了然而采取的一种简单的标记方法。加减乘除等计算符号在每个国家都是一样的。那么,十进制记数法在每个国家都一样吗?

小数发明后,许多数学家都在寻找更简单的方法来标记小数。经过长时间的努力,他们想出了一种表示整数和小数界限的记数法,即使用“|”、“和”等符号。其中,最方便书写的符号一直保留至今。

然而,每个国家的十进制记数法都有细微的差别。

法国、德国、意大利等国使用符号“,”在整数和小数之间,英国使用符号“”,美国、中国和韩国使用符号“”。".

比如法国、德国、意大利写了2345,英国写了2345,美国、中国、韩国写了2.345。

大多数数学符号的书写在世界各国都是一样的;但是十进制记数法在不同的国家略有不同。所以,出国旅游,一定要多加注意。

代表棒球击球平均数的小数。

棒球的击球率是击球次数与总击球次数的比率。在表示命中率的时候,所谓1切2分3%也是十进制记数法。“切”表示0.1,“分”表示0.01,“分”表示0.001。也就是说,1切2分3分就是0.123。

小编是一名注册会计师,很荣幸能够回答这个问题,“厘”主要用于民间贷款的利息计量单位,除了“厘”,还会用“分”来表示。按百分比表述,1分即1%,1厘即0.1%,3厘就是0.3%,一般借贷双方都要清晰明确是日利率还是月利率,是单利还是复利,具体分析如下:

根据日利率、月利率、单利、复利,利息3厘的年利率可分为“月利率、单利型”“月利率、复利型”“日利率、单利型”“日利率、复利型”4种类型。同时为了读者容易理解,假设借款1万元,借款期限为1年(一年365天),计算不同情况下的年利率。

一、月利率、单利型

1.年利息=10000*0.3%*12=360元

2.年利率=360/10000=3.6%

二、月利率、复利型

1.一年本金加利息=10000*(1+0.3%)^ 12=10366元

2.年利息=10366-10000=366元

3.年利率=366/10000=3.66%

三、日利率、单利型

1.年利息=10000*0.3%*365=10950元

2.年利率=10950/10000=109.5%

四、日利率、复利型

1.一年本金加利息=10000*(1+0.3%)^ 365=29842.87元

2.年利息=29842.87-10000=19842.87元

3.年利率=19842.87/10000=198.43%

备注:复利就是民间俗称的“驴打滚”“利滚利”,复利365次,一年利息居然能够达到了本金的2倍。

总结

如今的金融市场更多直接使用月利率、年利率,很少再使用“厘”“分”等词语来表达。根据4种计算方式,“日利率、复利型”的计算结果惊人,一年利息基本上就达到了本金的2倍,所以巴菲特曾说过复利是世界第八大奇迹。同时提醒借贷双方要考虑年利率的限额,根据法律规定,约定的利率未超过年利率24%,出借人请求借款人按照约定的利率支付利息的,人民法院应予支持。借贷双方约定的利率超过年利率36%,超过部分的利息约定无效。

随着社会的发展,时代的变迁。越来越多的企业对就业的要求不断提高。因此很多自考考生选择了自考来提高自己的学历,获取更多的就业机会,那么成人自考大专高数要考哪些?

成人自考大专高数要考哪些?

成人自考大专中高等数学考函数、极限与连续、导数与微分、微分中值定理和导数的应用、一元函数积分学和多元函数微积分等内容。

高等数学需要高中的代数和几何知识基础比较好,学起来就不难了。没有基础可能稍微会比较累点,想凭着高中的知识对付《高等数学》是有点困难的。

没有基础的考生可以选择科目少,不考数学的专业,比如汉语言文字,英语,行政管理,设计类,这些专业基本1.5-2年可以拿到毕业证,不会考数学,所以通过率很高。

自考命题标准

1、自考试卷大多是参照普通全日制高校的水平层次来命题,为的就是考验考生是否达到同等知识水平。命题和考试大纲比较接近,考验的是学生的基本理论、分析问题和解决问题的能力。同时也和全日制的合格分数线相同,严格按照全日制考试来要求考生。

2、自考的命题范围

自考命题一般不会超过考试大纲和教材,为的就是让每道题考生都有能力答出来;只是看你的复习是否到位。

3、自考试题类别

自考试题分为主观性试题和客观性试题两种类型。客观性试题有选择题、填空题、判断题等。主要的考验考生知识的掌握;答案都是固定的;都是教材有的知识点。

为形式化公理方法。 公理体系的合理性和公理化方法提出三个基本的要求: (1)协调性要求。 (2)独立性要求。(3)完备性要求。 (二)几何的统一化 F· 克莱因是近代数学史中非常有名的数学家,他的重要贡献之一,就是透过数学结构的方法为众多几何学分支找到一种内在的结构规律。 表面互不相干的几何学被 F·克莱因用变换群联系到一起,同时变换群的任何一个分类也对应几何学的一种分类。 F· 克莱因用群的结构与理论统一几何学的方法,是抽象结构方法的重要成就,是数学第二次抽象威力的具体体现。。 模型模式的抽象 粗略地说,数学模型是针对或参照某种事物系统的特征或数量关系,采用形式化数学语言,概括地或近似地表述出来的一种数学建构。所谓数学建构,是指使用数学概念、数学符号、数学语言等表述出来的被研究对象的纯关系结构。“纯”是指已扬弃了一切与关系无本质联系的属性,只保留与研究目的有关的本质特征。 具体地说,数学模型有广义的解释和狭义的解释。 (一)广义解释 数学模型是从现实世界中抽象出来的,是客观事物的某些属性的一种近似反映。(二)狭义解释 数学模型是将具体属性抽象出来构成一种特定的数学关系结构,只有那些反映特定问题或特定事物系统的数学结构才叫数学模型。 数学模型的抽象过程 具体的抽象过程我们可以总结为如下几个关键步骤: 首先,分析问题的各种关系,全面地掌握了问题中各种因素之间的联系。其次,确定了各关系之间的本质属性。 第三,建立一笔画的数学模型,第四,把数学模型返回到实际问题之中。检验正确,那么这个抽象的数学模型就可以广泛地加以应用。 中小学数学常见数学模型的抽象 (一)经济数学模型的抽象 在人类的生产生活中,有许多实际问题可以用初等数学来解决,对这些具体问题的抽象处理就形成了许多有关这些方面的数学模型。这些问题主要表现在工程进度、人口增长、收入变等方面。这些问题运用的数学工具大多是代数方程、指数函数以及其它相关的函数概念。这一类的数学模型在现实生活中随处可见,中小学的数学教学应以这些为例深入浅出地抽象、构造及运用这些模型。 (二)运动数学模型的抽象 一些事物在运动中表现出速度、加速度、时间、距离之间的关系,这类问题构成了带有运动特征的数学模型。 (三)逻辑程序数学模型的抽象 逻辑推理形式一直是数学运用的最基本的思想方法,从数学模型的抽象角度把它看作是一种数学方法和结构模型还是近代才引起人们重视的。对于初等数学教育而言,我们以前的数学教育只是在学习几何知识时才开始强化逻辑推理方面的教育,这种数学教育也由于对定义、定理的推导而忽视对逻辑程序自身的注意。近年来,由于计算机的迅速普及使得逻辑程序方面(或算法)的教育就显得越来越重要。 结合初中教学实际谈一谈你 对数学抽象的理解。 数学抽象的教学应当直接指向学生在与数学相关问题上的一般思维水平方面的发展。事实上,义务教育阶段的数学教育是一种公民教育,它给学生带去的绝不仅仅是会解更多的数学题了。这些学生的未来会遇到不同的挑战——一些人需要学习或研究更多的数学,对他们而言,是否能够“思考数学”非常重要;另一些人(他们是受教育的学生中的绝大多数)就业以后基本上不需要解纯粹的数学题(除了参加数学考试),对他们而言,“思考数学”是一种需要,但更多的或许是能够进行“数学的思考”,即在面临各种问题情境(特别是非数学问题)时,能够从数学的角度去思考问题、能够发现其中所存在的数学现象、并将之抽象为数学问题,运用数学的知识与方法去解决问题。对所有的未来公民来说,抽象思维和形象思维水平,归纳推理与演绎推理能力等都是不可缺少的。 这个教学目标的实现也不能仅仅通过研究“纯粹抽象”的数学现象来进行,而应当在研究多种现象与问题(数学的、非数学的)的过程中逐步完成。具体说来,就是让学生经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展数学抽象思维。 教学的主要目的在于使学生能够用数学的语言去刻画现实世界,去发现隐藏在具体事物背后的一般性规律。相对于不同学段的学生而言着重点不一样: 对第一学段的学生来说,能够用数和简单的图表刻画一些现实生活中的简单现象,就是目标;对第二学段的学生而言,应当包括既能够用数和简单的图表刻画一些现实生活中的现象,还应当包含对某些数字信息做出合理的解释;对于第三学段的学生来说,除去在较复杂的层面上能够完成前面的任务,重点应当是能够用各种数学关系(方程、不等式、函数等)去刻画具体问题,建立合适的数学模型。 第七章 数学推理 思维模式下对推理的理解 哲学对推理的理解为:推理是从一个或几个判断推出一个新的判断的思维形式。常见的推理有归纳推理,演绎推理和类比推理。 推理模式下对推理的理解 对于数学而言,本质上有两种推理模式,一种是演绎推理,一种是归纳推理。 基本推理是指由一个命题或者几个命题出发,得到另一个命题的思维路径,其中所谓的命题是指一种可以肯定或者否定的语句。 推理的基础 一个数学论证过程是由一系列基本推理构成的,讨论基本推理是分析数学论证过程的基础。基本推理中所涉及的基本概念包括语言、命题和定义,其中,语言是推理的工具,命题是推理的对象,定义是命题的基础。 推理的工具:语言 语句是指:表达一个完整思想的语言单位。如果不涉及论证过程,数学上的语句通常以命题的形式出现。 推理的对象:命题 命题是指:或者可以通过分析,或者可以通过经验证实的语句,也就是说,命题是一种可以进行是非判断的语句。 数学命题的核心是叙述研究对象之间的关系,即把关系概念应用于对象概念。数学推理过程中的命题必须简捷准确,不能引发歧义。 命题的基础:定义 准确的定义对于命题的判断是非常重要的,在这个意义上,定义是命题的基础。 数学定义大概分为两种:一种是名义定义,一种是实质定义。所谓名义定义是对某些事物标明符号,或者是对某类事物指明称谓。所谓实质定义是指揭示所研究问题对象内涵的逻辑方法,通过对许多所要研究问题的对象进行具体分析,归纳出共性、抽象出定义。 定义与命题之间的关系:定义的功能是为了明确讨论问题的对象,命题的功能是为了表述所讨论问题的实质,论证的功能是分析条件和结果之间的关系。 数学推理过程中需要把握三个基本原则,即同一律、矛盾律和排中律。 演绎推理的一般含义 我们初步定义数学中的演绎推理为:按照某些规定了的法则所进行的、前提与结论之间有必然联系的推理 。又因为数学的结论大体上可以分为命题结论和运算结论,那么针对数学的演绎推理而言,大体就可以分成两个部分:命题推理和运算推理。 一演绎推理在数学中有多种形式(如联合推理、选言推理、假言推理等),但数学中最常用的是直言三段论式的演绎推理。数学中常称之为“三段论”式的演绎推理。 直言三段论——具有传递关系的推理 三段论是一个包括大前提、小前提和结论三个部分的论证形式,这是一个基本推理的模式。 其基本模式为: 大前提:一切 M 都是(或不是 )P , 小前提: S是M, 结 论: S 是(或不是) P 。 数学的推理与证明过程,就是一连串的三段论式推理的有序组合。 直言三段论的本质是命题的可传递性,或者说,命题所对应的集合之间可以形成包含关系。 这样就可以得到结论:对于数学的推理而言,全称肯定、全称否定、特称否定这三种形式的直言三段论是有效的,也是经常被使用的。 用集合的语言对直言三段论表述如下:直言三段论表述的是集合之间的包含关系,这种关系具有传递性。其中关于“包含关系具有传递性”这个命题,应当是人们在长期的日常生活和生产实践中总结出来的公理,人们从远古的时候就会知道:一个人属于家庭,家庭属于族群,那么,这个人属于族群。这个命题的正确性是不需要证明的,并且,“具有传递性”这个命题应当作为人们可能进行逻辑推理的基础。 归纳推理是由已知为真的命题做前提,引出可能真实命题做结论的推理。 归纳推理的前提与结论之间具有必要条件关系。首先,归纳推理的前提必须是真实的、可靠的,否则,归纳也就失去了意义。前提的真实性对于归纳推理来说是必要的。人们根据考察对象涉及的是某类事物的一部分还是全体,又把具有递推关系的归纳推理分为不完全归纳推理和完全归纳推理。 (一)不完全归纳推理 不完全归纳推理是根据某类事物的部分对象具有的(或不具有)某种属性,推出该事物的全体具有(或不具有)这种属性的思维方式。 (二)完全归纳推理 完全归纳推理是从某类事物每个对象都具有(或不具有)某种属性,推出这类事物的全体具有(或不具有)某种属性的思维方法。由于这类方法考察了某类事物的全部对象,所以得出的结论必定是正确。 1.穷举法 穷举法是数学中常用的一种完全归纳法。它是对具有有限个对象的某类事物进行研究时,把所有的对象的属性分别讨论,从肯定它们都具有某一属性得到这类事物都具有这一属性 (全称判断)的归纳推理。 一个比穷举法更一般的方法被称为简单枚举法 。 2.类分法 在考察中需要先对研究的对象按前提中可能存在的情况进行分类,再按类分别证明。 合情推理 结合中学数学教学实际,谈谈 合情推理在数学上的意义 数学是一个逻辑推理构成的体系,在思维进程的意义上它是从一般到特殊的推理论证。对前提的确认,通过逻辑推理带来对结论的确认,每一步推理都是可靠的、无可置疑的,因而这种逻辑推理确认了逻辑上可靠的数学知识,同时也建立了严格的数学体系。实际上,这种数学的逻辑构造只是数学建构后的表现形式,而在形成这种演绎形式之前,数学的理论必有一个探索发现的过程。这个探索发现的过程作为一种思维方式,作为一种数学发现的方法,是非逻辑演绎的,是一种合乎情理的、似真的推理过程,即合情推理。 作为数学中的创造性思维,它面临的是一个前人没有论证过的问题。因此按照合乎情理的方向,按照自己认为可能是正确的方向去进行推理,探索可能得到的结论,探索可能运用的方法,是合情推理发挥作用的地方。对于一个想把数学作为终身事业的学生而言,它必须学会逻辑论证推理。因为这是他未来的工作,也是数学科学思维发展中的一个特征。数学家为了取得成就,也必须学会合情推理,因为这是他创造性工作赖以进行的那种推理。 作为数学的学习,如果我们要求学生运用自己掌握的数学知识去解决问题,那么作为学生的个体经验,他必然有一个自我形式的合情推理过程,即按照自己认为可能合乎情理、可能正确的方向来试一下,尝试一下自己的方法、想法是否正确。从这种意义上来说,对于数学学习者,对于数学的解题过程而言,合情推理就是一个必须学会运用的思维方式。 合情推理实际上强调了一种思维的主动性、情感性和试错性。所谓主动性是说,合情推理不受数学自身严格演绎推理的束缚,可以向自己认为合乎情理的方向主动思考,尽管这种思考可能与数学本身的要求有差距。所谓情感性是说,合情推理可以按照自己认为似真的方向进行探索。这实际上只是一种探索性的思考,尽管这种思考可能与数学的真正演绎证明有一些差异。所谓试错性是说,合情推理是一个学习、论证的试错过程,正是通过不断的主观积极的试错才使问题得到最终的解决。 数学中合情推理的方式是各式各样的,在这些合情推理中最常用的是类比推理和归纳推理两种。 类比推理是指根据两个不同对象的某些方面相同或相似,推导出或猜出它们在其它方面可能具有相同或相似的思维形式。它是思维进程中由特殊到特殊的推理方式。 波利亚在论及类比合情推理的作用时,认为它可以在三个方面发挥作用:(1)可以提出新问题和获得新发现;(2)可以在求解问题中得到应用;(3)可以用来对猜测进行检验。应当指出的是,类比推理只是一种合情推理,它不能提供严格准确的数学逻辑证明。它获得的结论的正确与否,还必须经过严格的证明。因此类比推理是一种创造性、启发性较强而可靠性较弱的方法。 合情推理中的归纳 合情推理中所说的归纳是归纳推理思维方式中的不完全归纳推理,又称之为经验归纳法或称之为实验归纳法。这是一种从个别到一般,从经验事实或实验事实到理论的一种寻找真理和发现真理的方法。 1.用经验归纳法发现问题的结论 对于数学问题而言,运用经验归纳法可以由一个特殊的事实来猜测可能存在的结论。 2.用经验归纳发现解决数学问题的路径 在经验归纳的合情推理中,可以由一个特殊处理问题的数学公式、数学方法或解题思路中归纳推导出对一般问题的处理公式、方法或思路。 合情推理中,类比推理与归纳推理差异是明显的。归纳推理是从特殊到一般的推理,是一种纵向思维;类比推理则是借助两个系统某些部分的相似性或一致性进行的横向思维。在实际问题中,两种推理形式互相促进,成为合情推理中相互配合、相互利用的重要的数学发现的方法。而作为合情推理,作出创造性思维有时需要不同思维方式的相互配合。 数学猜想——介于归纳与演绎之间 数学猜想,是指人们根据已知的某些数学知识和某些事实,对数学的某些理论、方法等提出一些猜测性的推断。 1.由归纳提出数学猜想 由某类数学对象中的个别对象具有的属性,进而猜想该类对象全体都具有这种属性,这是不完全归纳的基本思维方法。利用不完全归纳的思维方法提出数学猜想是构成创造性思维的一个重要方面。 2.由类比产生的数学猜想 类比是产生数学猜想的一个重要思维方法,许多数学家通过类比获得了一种灵感、一种直觉,进而提出数学猜想。 但是,我们要清楚的知道,一个数学猜想的证明历程并不是容易的事情。 演绎推理与归纳推理的关系 演绎推理的定义:按照某些规定了的法则所进行的、前提与结论之间有必然联系的推理。 归纳推理的定义: 按照某些法则所进行的、前提与结论之间有或然联系的推理。比较可以看到,归纳推理比演绎推理要灵活得多,这是因为:在推理过程中,“法则”是必要的,但不需要事先规定;前提与结果之间的“联系”是必要的,但这种联系是或然的而不是必然的 。正因为归纳推理具有这种灵活性,才可能从事物(事情和实物)的现实出发,对事物的过去或者未来进行推断。虽然通过推断得到的结论不一定是必然的,但却是实用的,因为在日常生活和生产实践中,人们对事情决策所遵循的原则并不要求必然成立,只是希望在大多数情况下成立。 对于数学而言,如果说演绎推理是为了证明的推理,那么归纳推理就是为了推断的推理,把这两种推理模式结合起来,就得到了 数学的推理的全部过程:从条件出发,借助归纳推理“推断”数学结果的可能性,借助演绎推理“验证”数学结果的必然性;或者进行一个相反的推理过程:从结果出发,借助归纳推理“推断”数学条件的可能性,借助演绎推理“验证”数学条件的必要性。 谈谈你 对数学推理教学的理解。 长期以来数学教学注重采用“形式化”的方式,发展学生的演绎推理能力,忽视了合情(归纳)推理能力的培养。数学不仅需要演绎推理,同样、甚至有时更需要合情(归纳)推理。科学结论的发现往往发端于对事物的观察、比较、归纳、类比……,即通过合情(归纳)推理提出猜想,然后再通过演绎推理证明猜想正确或错误。演绎推理和合情(归纳)推理是既不相同又相辅相成的两种推理。 《标准》对推理能力的主要表现作了如下的阐述:“能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例”。这就是说,学生获得数学结论应当经历 合情(归纳) 推理——演绎推理的过程。 合情(归纳) 推理的实质是“发现”,因而关注归纳推理能力的培养有助于发展学生的创新精神。当然,由 合情(归纳) 推理得到的猜想常常需要证实,这就要通过演绎推理给出证明或举出反例,《标准》中对一些公式、法则、定理的证明,也规定了相应的论证的要求。推理能力的培养,必须充分考虑学生的身心特点和认知水平,注意层次性。即使如此,《标准》在“学段目标”的“数学思考”部分的表述中,三个学段仍然有着一定的层次。 培养学生的演绎推理能力不仅要注意层次性,而且要关注学生的差异。要使每一个学生都能体会证明的必要性,从而使学习演绎推理成为学生的自觉要求,克服“为了证明而证明”的盲目性;又要注意推理论证“量”的控制,以及要求的有序、适度。 第八章 数学活动经验 基本活动经验是近年来在《全日制义务教育数学课程标准》的修订过程中提出的新观点、新概念,目前已经变成支撑我国初中数学课程的“四基”之一,即基础知识、基本技能、基本活动经验和基本思想。 “经验”的基本含义 在通常意义下,所谓经验,就是按照事实原样而感知到的内容。《全日制义务教育数学课程标准》(修订稿)指出,“义务教育数学课程的目标在于,获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。”这里的基本活动经验,实际上是指“学生亲自或间接经历了活动过程而获得的经验”。 基本活动经验的含义 是指,围绕特定的数学课程教学目标,学生经历了与数学课程教学内容密切相关的数学活动之后,所留下的、有关数学活动的直接感受、体验和个人感悟。 基本活动经验是经验的一种,由于经验的层次、水平所限,个体之间的数学活动经验有较大差异,即使在同一个活动中,不同的个体所获得的基本活动经验也会有所不同,这往往取决于个体对活动的感知水平与反思能力。 学生的基本活动经验包含三类基本内容: 1 .一种体验性的内容 这种经验成分更多地表现为,学生在经历了活动之后在自己的情感、意志世界所形成的有关数学学科活动的、稳定的心理倾向。 2 .一种方法性内容 即学生获得了这种活动经验之后,积累了开展类似活动的一种或几种基本的方法。这种策略既有方法学知识的意味,更有学生对这些策略、方法的自我诠释、自我解读。它属于典型的 个体知识,而不是作为严格的数学学科知识出现的一般知识。 3 .一种模式性、策略性的内容这种内容与第二类类似,都是在学生获得了这种活动的初步经验之后,经过个人反省而提升出来的、开展类似活动的一种或几种基本模式、基本策略。它仍属于典型的 个体知识。 从哲学上讲,在数学学科教、学中,让学生获得数学的基本活动经验,本质上是让学生获得数学学科直观,这是学生获得数学发展的源泉。无论是作为普适性方法而出现的经验,还是作为模式性、策略性内容出现的经验,都是建立在直接的、感性的经验基础之上,经过个体的自我反省(反思)而形成的,它们带有明显的“再抽象”、再加工痕迹,都是基于个体对活动过程的再现所致。因而,数学学习必须诱发学生主动参与,积极思考,教师的使命和责任在于帮助学生建构其数学理解。 基本活动经验与相关概念的关系 基本活动经验与数学活动、基础知识、基本技能和基本思想的关系 在数学学习中,基本活动经验是对有关数学活动过程的个体反映,是个体针对相关数学活动过程的直接感知及其之上的自我反省的结果。 数学课程教学不仅要教给学生知识,更要帮助学生形成智慧。知识的主要载体是书本,智慧则形成于经验的形成和积累的过程之中,形成于经历的数学活动之中,诸如教师为学生创造的思考的过程、探究的过程、抽象的过程、预测的过程、推理的过程、反思的过程等。智慧形成于学生应用所学的各类知识,发现问题、提出数学问题并加以分析和解决问题的各种教育教学实践活动之中。因而,数学的基本活动经验直接来源于数学活动之中。 在经历同一个数学活动过程之中,不同的人所获得的基本活动经验往往有所不同,往往存在着个体差异。这些差异,一方面来自于个体的感觉、知觉的水平差异,另一方面,这些差异与个体针对感觉、知觉到的内容的自我反省的水平和深广度密切相关。与其同时,这些差异也与个体参与活动的参与程度有着必然的关联。 基本活动经验与活动过程的关系 基本活动经验是对有关数学活动过程的个体反映,是个体针对相关数学活动过程的直接感知及其之上的自我反省的结果。 经历、体验、经验的区别和联系 基本活动经验与经历、体验密切相关,而彼此又有一些区别和关联。 人的经历可以分两种,即直接经历与和间接经历,其中,前者是主体亲身见过、做过或遭遇过某事件的过程而获得的经历,后者是主体从他人处听说或从其他媒介得到他人的经历。 而体验是一种感受经历的过程,是通过主体亲身体验事件发生的过程,从而获得经历,让主体在实践中实现自我领域的充实,感受经历的产生,领悟经历产生的意义,并在反思中进行情感的升华,因而,体验必须从直接经历中得到。 体验具有很强的、个体的情感色彩,停留在经历本身的感性的层面。 经历是为了进行体验,而体验不是目的,是为了获得直接的经验和感受,增强对知识、技能的理解,实现主体在情感、态度、价值观上的升华和发展,同时,能够对知识技能的理解和认识予以强化。然而,并不是所有的体验都会抽象提升为经验,若没有对体验抽象提取,也可能只是将情感升华为信念。主体在情感升华过程中,会和其对事件的原有兴趣进行对比,如果情感升华与原有兴趣一致,那么,其信念将会被强化,反之,则会被弱化。也就是说,体验其实也不是万能的。 基本活动经验的教育价值与基本功能 解基

自考数学基础知识点总结视频

为大家整理了一份专升本学习资料,包括各大机构的语文,数学,英语以及各大专业课的学习资源,适合想自考的学生,后面会不断汇聚更多优秀学习资源,供大家交流分享学习,需要的可以先收藏转存,有时间慢慢看~

专升本资源实时更新

链接:

提取码:2D72

腾讯视频 搜索周建松可以找到哦

如果你想简单学,就自己购买一本高数的书,如果家附近有大学,去学校里买本二手的,不贵。根据书来学,哪部分卡住了就补哪部分知识,缺点是这样学出来的只能应付考试,遗忘很快。如果你想仔细学,那就要时间了,数学作为一个基础学科,高数是很深的。我这只能给你一个建议。首先,用1周时间把小学每个年级的教材学完。然后半个月学完初中教材。一周时间将高中教材框架整理了解,然后根据高数教材去学习,顺序是学一个版块高中数学,然后学一个板块高数。等把所有高中数学设及板块学完,再去学剩下的。如果你确实感兴趣,一年时间应该没问题。如果你是强迫自己学习,那你就要做好“秃头”的打算,基础数学真的很熬人。还有一个,建议也学习下初等数学,也能锻炼一下数学思维。或者体验一下数学建模的魅力,去参加一下数学建模竞赛,挺有意思的。希望上述内容能够帮到你。

今天教务老师给大家收集整理了自考版的高等数学教材,自考高等数学难吗的相关问题解答,还有免费的自考历年真题及自考复习重点资料下载哦,以下是全国我们为自考生们整理的一些回答,希望对你考试有帮助!高等数学自学书籍1《微积分学教程》菲赫金格尔茨著数学分析第一名著,不要被它的大部头吓到。强烈推荐大家看一下,哪怕买了收藏。买书不建议看价格,而要看书好不好。一本好的教科书能打下坚实的基础,影响今后的学习。2《数学分析原理》菲赫金格尔茨著上本书的简写,不提倡看,要看就看上本。3《数学分析》卓立奇观点很新,最近几年很流行,不过似乎没有必要。4《数学分析简明教程》辛钦课后没有习题,但是推荐了《吉米多维奇数学分析习题集》里的相应习题。但是随着习题集的更新,题已经对不上号了,不过辛钦的文笔还是不错的。5《数学分析讲义》阿黑波夫等著莫斯科大学的讲义,不过是一本讲义,看着极为吃力,不过用来过知识点不错。6《数学分析八讲》辛钦大师就是大师,强烈推荐。7《数学分析原理》rudin中国的数学是从前苏联学来的,和俄罗斯教材比较像,看俄罗斯的书不会很吃力。不过这本美国的书还是值得一看的。写的简单明了,可以自己试着把上面的定理推导一遍。自考的高数一主要学哪些内容?自学高数难度大吗?自考本科药学要考几科?自考的高数一关键学什么内容?高等数学(一)是和全国自学考试《高等数学(一)微积分》通过自学考纲、教材内容相配套的辅导用书。书籍具体内容文件目录:第二章极限与连续第三章导数与微分第四章微分中值定理和导数的应用第五章一元函数积分学第六章多元函数微积分学自学高数难度高吗?自学高数是比较困难的。自考是《高等数学(一)》,这一课程测试具有一定难度系数,尤其是针对数学课基础不好考试的考生来讲,因而各位考生务必足够的重视该课程课程的学习,那样才能成功地利用该课程测试。《高等数学(一)》的试卷难度取决于这方面课程特殊性,由于数学类课程并不像一些技术专业课程能够进行自主学习,而是应该在一定基础数学上进行培训。因而学生一部分基础数学无法完全把握会很好地危害学生课程学习。自考药学本科考哪几科中国近现代史规划纲要、马克思现实主义基本概念总论、中药学(二)、中药评定学、有机化学(二)、药学(三)、中药制药工程基本原理与机器设备、中药中药制剂剖析、药事管理学(一)、英文(二)、分析化学(二)、中成药学、中药文献学、医药市场营销学、中国药业史等。设立自考药学的大学包括南京中医药大学、山东中医药大学、福建中医药大学、湖南中医药大学、长春中医药大学、沈阳药科大学等。报名目标仅限已经取得环境卫生类职业资格的在职员工,具备中药士、药剂士或以上技术职务,从事中药生产制造、运营等工作三年以上在职员工里的专科学生。大众对药理学人才的培养要求已经提升,生物制药发展趋势迅速,尤其是生活越来越好之后,人们对于保健品的要求在扩大,公司对药理学优秀人才较为亲睐。再有一块便是生物化学,这是一个新起都是顶尖的企业,发展前途非常好。药学大学毕业生关键安排到药业公司和医药研究所从业各种药物开发、科学研究、制造品质保证和安全用药等方面工作,也有不少人从业代理销售。主要会学习微积分,线性代数,概率学,统计学;自学高数的难度很大,主要取决于你的基础是不是比较好;自考本科药学需要考20门科目。微积分,统计初步,线性代数;难度还是非常大的;要考20科,有药物分析,药物化学,计算机应用基础,有机化学,分子生物学等。自考的高数与主要学习的一些内容就是微积分,线性代数,概率论和统计初步等各项内容,难度还是非常大的;自考本科药学要考20科。高等数学第五版教材在哪下载什么出版社的啊,是高教的么?你还是自己去买一本用起来比较方便吧,网络下载教材一般都不是特别清晰,而且还不能自己随手加标注。海淀图书城都可以打折,买一本方便。高等数学同济六版十一五教材与十二五教材有什么区别?主要是有些内容更新了哦自考/成考有疑问、不知道自考/成考考点内容、不清楚当地自考/成考政策,点击底部咨询官网老师,免费领取复习资料:

  •   索引序列
  •   自考数学基础知识点总结
  •   自学考试数学基础知识点总结
  •   自考数学基础知识点归纳总结
  •   自考数学基础知识点总结大全
  •   自考数学基础知识点总结视频
  •   返回顶部

自考地区