自考问答 自考本科自考百科
自考问答 > 自考百科 > 自学考试学位数据

自学考试学位数据

发布时间:

自学考试学位数据

发布时间:

自学考试学位数据

自考每科在70分以上就可以申请学士学位的。当然,要想申请学士学位是必须要考英语的,并且论文也是很优秀的就可以申请学士学位了。我也是在这里自考的,当时也是为了申请学士学位,有一科没有考到70分,我有重新考了一次,当时老师了解到我的情况,对我也是很督促的,所以我也比较了解的。希望我的经历可以对你有帮助吧,考试加油哦。

自考本科学士学位信息网上查询方法:

1、百度输入学位网或者点击进入网址;

2、点击进入学位查询会弹出查询须知窗口,考生需仔细阅读所列条款再点击我已阅读。

3、点击我已阅读后会进入选择查询方式页面再选择学位获得者查询,考生如若是第一次查询需要进行注册。注意:学位获得者通过实名注册进行免费查询,实名注册需要提供详细个人信息。

4、点击进行注册后会再次弹出查询须知页面,只需要点击我已阅读即可!

6、点击我已阅读后会再次弹出学位证书查询系统学位获得者实名注册条款,点击我同意即可!

7、点击我同意后会进入学位获得者在线实名注册,温馨提示:当前请尽量别使用163、126邮箱进行注册!

8、注册后页面会弹出一段文字:您的实名注册申请已提交,稍后系统将自动处理您的申请,并将处理结果发至您的邮箱:xxxxxx qq.com,请两分钟后登陆邮箱完成账号激活操作。

9、等待两分钟进入邮箱后,邮箱里面会显示您已通过学位证书查询系统实名验证,然后再点击立刻去激活您的注册账号进行激活即可。

10、当跳转至以下界面后,可输入验证码点击激活即可!

11、最后回到以下页面进行登录,这里需要注意的是只有5此输错密码的机会,所以一定要记好自己的账号及密码。

12、登录后就可以看到学位证书查询结果了。

教育部有一个官方网站可以提供查询的,那就是学信网。进入学信网以后,在最上方的菜单栏中可以看到相应的学历查询功能,点击进入。查询的方式有很多种,比如个人查询、单位查询、零散查询等等,对于个人来说,选择个人查询就可以啦。 申请自考本科学士学位流程 1、自学考试本科毕业生符合学士学位审批条件,于发毕业证的同时(一般3月初)向当地教育考试院或自学考试办公室提出申请,填写学士学位表一式2份,交近期2寸免冠照片一张。 2、市考试院或自考办对申请人档案材料(包括本科毕业生鉴定表、毕业论文原件及论文成绩单)和毕业生填写的学士学位评定表进行审定,无误后,于3月底报省考试院。 3、省考试院整理汇总各市地申报的学士学位材料,进行初审,初审合格者将考生档案材料与学土学位名册于每年4月推荐给有授予权的主考学校。 4、6月底主考学校学士学位主管部门和学术委员会按要求对申请学位者逐个评审,评审合格,授予学士学位,未通过者不再补授。 申请学位证材料 ①本人申请(统一格式、按规定要求填写)。 ②本科毕业证书的原件及复印件(验证原件,复印件存档)。 ③学位课程考试合格证书原件(存档)。 ④自考毕业生须提交《毕业生登记表》原件及复印件(验证原件,复印件存档)。 ⑤本科毕业证书相片的电子版照片及同底的小二寸纸质相片两张,相片反面注明姓名装入小信封内,信封上注明姓名,自考,专业名称,本人联系电话。 ⑥身份证原件及复印件(验证原件,复印件存档)。 注:各院校要求不同,具体以主考院校的规定通知为准。自考/成考有疑问、不知道如何总结自考/成考考点内容、不清楚自考/成考报名当地政策,点击底部咨询官网,免费领取复习资料:

我了解到的,自考每科达到七十分以上就可以申请学士学位啦,因为我现在也刚自考不久,也是在这家报名的,所以我也有了解,学士学位还是很有用的,对于以后考研选择的机会也是多很多的,你可以问一下老师再了解清楚点的。我所了解的是这个情况的。

自学考试数据

2022年广东自学考试报名人数400万。根据查询相关公开信息显示,2022年广东自学考试报考人数累计达到400万,意味着广东每30人中就有一人报名参加自学考试。数据来源于广东自考网。

第六章 树 树是n个结点的有限集合,非空时必须满足:只有一个称为根的结点;其余结点形成m个不相交的子集,并称根的子树。 根是开始结点;结点的子树数称度;度为0的结点称叶子(终端结点);度不为0的结点称分支结点(非终端结点);除根外的分支结点称内部结点; 有序树是子树有左,右之分的树;无序树是子树没有左,右之分的树;森林是m个互不相交的树的集合; 树的四种不同表示方法:·树形表示法;·嵌套集合表示法;·凹入表示法·广义表表示法。 二叉树的定义:是n≥0个结点的有限集,它是空集(n=0)或由一个根结点及两棵互不相交的分别称作这个根的左子树和右子树的二叉树组成。 二叉树不是树的特殊情形,与度数为2的有序树不同。 二叉树的4个重要性质: ·。二叉树上第i层上的结点数目最多为2^(i-1)(i≥1)。; ·深度为k的二叉树至多有(2^k)-1个结点(k≥1); ·。在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1; ·。具有n个结点的完全二叉树的深度为int(log2n)+1. 满二叉树是一棵深度为k,结点数为(2^k)-1的二叉树;完全二叉树是满二叉树在最下层自右向左去处部分结点; 二叉树的顺序存储结构就是把二叉树的所有结点按照层次顺序存储到连续的存储单元中。(存储前先将其画成完全二叉树) 树的存储结构多用的是链式存储。BinTNode的结构为lchild|data|rchild,把所有BinTNode类型的结点,加上一个指向根结点的BinTree型头指针就构成了二叉树的链式存储结构,称为二叉链表。它就是由根指针root确定的。共有2n个指针域,n+1个空指针。 根据访问结点的次序不同可得三种遍历:先序遍历(前序遍历或先根遍历),中序遍历(或中根遍历)、后序遍历(或后根遍历)。时间复杂度为O(n)。 利用二叉链表中的n+1个空指针域来存放指向某种遍历次序下的前趋结点和后继结点的指针,这些附加的指针就称为“线索”,加上线索的二叉链表就称为线索链表。线索使得查找中序前趋和中序后继变得简单有效,但对于查找指定结点的前序前趋和后序后继并没有什么作用。 树和森林及二叉树的转换是对应的。 转换方法: ·树变二叉树:兄弟相连,保留长子的连线。 ·二叉树变树:结点的右孩子与其双亲连。 ·森林变二叉树:树变二叉树,各个树的根相连。 树的存储结构:·有双亲链表表示法:结点data | parent,对于求指定结点的双亲或祖先十分方便,但不适于求指定结点的孩子及后代。 ·孩子链表表示法:为树中每个结点data | next设置一个孩子链表firstchild,并将data | firstchild存放在一个向量中。 ·双亲孩子链表表示法:将双亲链表和孩子链表结合。 ·孩子兄弟链表表示法:结点结构leftmostchild |data | rightsibing,附加两个分别指向该结点的最左孩子和右邻兄弟的指针域。 树的前序遍历与相对应的二叉树的前序遍历一致;树的后序遍历与相对应的二叉树的中序遍历一致。 树的带权路径长度是树中所有叶结点的带权路径长度之和。树的带权路径长度最小的二叉树就称为二叉树(即哈夫曼树)。 在叶子的权值相同的二叉树中,完全二叉树的路径长度最短。 哈夫曼树有n个叶结点,共有2n-1个结点,没有度为1的结点,这类树又称为严格二叉树。 变长编码技术可以使频度高的字符编码短,而频度低的字符编码长,但是变长编码可能使解码产生二义性。如00、01、0001这三个码无法在解码时确定是哪一个,所以要求在字符编码时任一字符的编码都不是其他字符编码的前缀,这种码称为前缀码(其实是非前缀码)。 哈夫曼树的应用最广泛地是在编码技术上,它能够容易地求出给定字符集及其概率分布的前缀码。哈夫曼编码的构造很容易,只要画好了哈夫曼树,按分支情况在左路径上写代码0,右路径上写代码1,然后从上到下到叶结点的相应路径上的代码的序列就是该结点的前缀码。 第七章 图 图的逻辑结构特征就是其结点(顶点)的前趋和后继的个数都是没有限制的,即任意两个结点之间之间都可能相关。 图GraphG=(V,E),V是顶点的有穷非空集合,E是顶点偶对的有穷集。 有向图Digraph:每条边有方向;无向图Undigraph:每条边没有方向。 有向完全图:具有n*(n-1)条边的有向图;无向完全图:具有n*(n-1)/2条边的无向图; 有根图:有一个顶点有路径到达其它顶点的有向图;简单路径:是经过顶点不同的路径;简单回路是开始和终端重合的简单路径; 网络:是带权的图。 图的存储结构: ·邻接矩阵表示法:用一个n阶方阵来表示图的结构是的,适合稠密图。 ·无向图:邻接矩阵是对称的。 ·有向图:行是出度,列是入度。 建立邻接矩阵算法的时间是O(n+n^2+e),其时间复杂度为O(n^2) ·邻接表表示法:用顶点表和邻接表构成不是的,适合稀疏图。·顶点表结构 vertex | firstedge,指针域存放邻接表头指针。 ·邻接表:用头指针确定。 ·无向图称边表; ·有向图又分出边表和逆邻接表; ·邻接表结点结构为 adjvex | next, 时间复杂度为O(n+e)。,空间复杂度为O(n+e)。。 图的遍历: ·深度优先遍历:借助于邻接矩阵的列。使用栈保存已访问结点。 ·广度优先遍历:借助于邻接矩阵的行。使用队列保存已访问结点。 生成树的定义:若从图的某个顶点出发,可以系统地访问到图中所有顶点,则遍历时经过的边和图的所有顶点所构成的子图称作该图的生成树。 最小生成树:图的生成树不,从不同的顶点出发可得到不同的生成树,把权值最小的生成树称为最小生成树(MST)。 构造最小生成树的算法: ·Prim算法的时间复杂度为O(n^2)与边数无关适于稠密图。 ·Kruskal算法的时间复杂度为O(lge),主要取决于边数,较适合于稀疏图。 最短路径的算法:·Dijkstra算法,时间复杂度为O(n^2)。·类似于prim算法。 拓扑排序:是将有向无环图G中所有顶点排成一个线性序列,若 ∈E(G),则在线性序列u在v之前,这种线性序列称为拓扑序列。 拓扑排序也有两种方法:·无前趋的顶点优先,每次输出一个无前趋的结点并删去此结点及其出边,最后得到的序列即拓扑序列。 ·无后继的结点优先:每次输出一个无后继的结点并删去此结点及其入边,最后得到的序列是逆拓扑序列。 第八章 排序 记录中可用某一项来标识一个记录,则称为关键字项,该数据项的值称为关键字。 排序是使文件中的记录按关键字递增(或递减)次序排列起来。 ·基本操作:比较关键字大小;改变指向记录的指针或移动记录。 ·存储结构:顺序结构、链表结构、索引结构。 经过排序后这些具有相同关键字的记录之间的相对次序保持不变,则称这种排序方法是稳定的,否则排序算法是不稳定的。 排序过程中不涉及数据的内、外存交换则称之为“内部排序”(内排序),反之,若存在数据的内外存交换,则称之为外排序。 内部排序方法可分五类:插入排序、选择排序、交换排序、归并排序和分配排序。 评价排序算法好坏的标准主要有两条:执行时间和所需的辅助空间,另外算法的复杂程序也是要考虑的一个因素。 插入排序:·直接插入排序: ·逐个向前插入到合适位置。 ·哨兵(监视哨)有两个作用: ·作为临变量存放R[i] ·是在查找循环中用来监视下标变量j是否越界。 ·直接插入排序是就地的稳定排序。时间复杂度为O(n^2),比较次数为(n+2)(n-1)/2;移动次数为(n+4)(n-1)/2; ·希尔排序: ·等间隔的数据比较并按要求顺序排列,最后间隔为1. ·希尔排序是就地的不稳定排序。时间复杂度为O(n^1.25),比较次数为(n^1.25);移动次数为(1.6n^1.25); 交换排序:·冒泡排序:·自下向上确定最轻的一个。·自上向下确定最重的一个。·自下向上确定最轻的一个,后自上向下确定最重的一个。 ·冒泡排序是就地的稳定排序。时间复杂度为O(n^2),比较次数为n(n-1)/2;移动次数为3n(n-1)/2; ·快速排序:·以第一个元素为参考基准,设定、动两个指针,发生交换后指针交换位置,直到指针重合。重复直到排序完成。 ·快速排序是非就地的不稳定排序。时间复杂度为O(nlog2n),比较次数为n(n-1)/2; 选择排序:·直接选择排序: ·选择最小的放在比较区前。 ·直接选择排序就地的不稳定排序。时间复杂度为O(n^2)。比较次数为n(n-1)/2; ·堆排序 ·建堆:按层次将数据填入完全二叉树,从int(n/2)处向前逐个调整位置。 ·然后将树根与最后一个叶子交换值并断开与树的连接并重建堆,直到全断开。 ·堆排序是就地不稳定的排序,时间复杂度为O(nlog2n),不适宜于记录数较少的文件。 归并排序: ·先两个一组排序,形成(n+1)/2组,再将两组并一组,直到剩下一组为止。 ·归并排序是非就地稳定排序,时间复杂度是O(nlog2n), 分配排序:·箱排序: ·按关键字的取值范围确定箱子数,按关键字投入箱子,链接所有非空箱。 ·箱排序的平均时间复杂度是线性的O(n)。 ·基数排序:·从低位到高位依次对关键字进行箱排序。 ·基数排序是非就稳定的排序,时间复杂度是O(d*n+d*rd)。 各种排序方法的比较和选择: ·。待排序的记录数目n;n较大的要用时间复杂度为O(nlog2n)的排序方法; ·记录的大小(规模);记录大用链表作为存储结构,而快速排序和堆排序在链表上难于实现; ·关键字的结构及其初始状态; ·对稳定性的要求; ·语言工具的条件; ·存储结构; ·时间和辅助空间复杂度。 第九章 查找 查找的同时对表做修改操作(如插入或删除)则相应的表称之为动态查找表,否则称之为静态查找表。 衡量查找算法效率优劣的标准是在查找过程中对关键字需要执行的平均比较次数(即平均查找长度ASL)。 线性表查找的方法: ·顺序查找:逐个查找,ASL=(n+1)/2; ·二分查找:取中点int(n/2)比较,若小就比左区间,大就比右区间。用二叉判定树表示。ASL=(∑(每层结点数*层数))/N. ·分块查找。要求“分块有序”,将表分成若干块内部不一定有序,并抽取各块中的关键字及其位置建立有序索引表。 二叉排序树(BST)定义是:二叉排序树是空树或者满足如下性质的二叉树: ·若它的左子树非空,则左子树上所有结点的值均小于根结点的值; ·若它的右子树非空,则右子树上所有结点的值均大于根结点的值; ·左、右子树本身又是一棵二叉排序树。 二叉排序树的插入、建立、删除的算法平均时间性能是O(nlog2n)。 二叉排序树的删除操作可分三种情况进行处理: ·*P是叶子,则直接删除*P,即将*P的双亲*parent中指向*P的指针域置空即可。 ·*P只有一个孩子*child,此时只需将*child和*p的双亲直接连接就可删去*p. ·*p有两个孩子,则先将*p结点的中序后继结点的数据到*p,删除中序后继结点。 关于B-树(多路平衡查找树)。它适合在磁盘等直接存取设备上组织动态的查找表,是一种外查找算法。建立的方式是从下向上拱起。 散列技术:将结点按其关键字的散列地址存储到散列表的过程称为散列。散列函数的选择有两条标准:简单和均匀。 常见的散列函数构的造方法: ·。平方取中法:hash=int((x^2)%100) ·。除余法:表长为m,hash=x%m ·。相乘取整法:hash=int(m*(x*A-int(x*A));A=0.618 ·。随机数法:hash=random(x)。 处理冲突的方法:·开放定址法: ·一般形式为hi=(h(key)+di)%m1≤i≤m-1,开放定址法要求散列表的装填因子α≤1. ·开放定址法类型: ·线性探查法:address=(hash(x)+i)%m; ·二次探查法:address=(hash(x)+i^2)%m; ·双重散列法:address=(hash(x)+i*hash(y))%m; ·拉链法: ·是将所有关键字为同义词的结点链接在同一个单链表中。 ·拉链法的优点: ·拉链法处理冲突简单,且无堆积现象; ·链表上的结点空间是动态申请的适于无法确定表长的情况; ·拉链法中α可以大于1,结点较大时其指针域可忽略,因此节省空间; ·拉链法构造的散列表删除结点易实现。 ·拉链法也有缺点:当结点规模较小时,用拉链法中的指针域也要占用额外空间,还是开放定址法省空间。 第十章 文件 文件是性质相同的记录的集合。记录是文件中存取的基本单位,数据项是文件可使用的最小单位,数据项有时称字段或者属性。 文件·逻辑结构是一种线性结构。 ·操作有:检索和维护。并有实时和批量处理两种处理方式。 文件·存储结构是指文件在外存上的组织方式。 ·基本的组织方式有:顺序组织、索引组织、散列组织和链组织。 ·常用的文件组织方式:顺序文件、索引文件、散列文件和多关键字文件。 评价一个文件组织的效率,是执行文件操作所花费的时间和文件组织所需的存储空间。 检索功能的多寡和速度的快慢,是衡量文件操作质量的重要标志。 顺序文件是指按记录进入文件的先后顺序存放、其逻辑顺序和物理顺序一致的文件。主关键字有序称顺序有序文件,否则称顺序无序文件。 一切存储在顺序存储器(如磁带)上的文件都只能顺序文件,只能按顺序查找法存取。 顺序文件的插入、删除和修改只能通过复制整个文件实现。 索引文件的组织方式:通常是在主文件之外建立一张索引表指明逻辑记录和物理记录之间一一对应的关系,它和主文件一起构成索引文件。 索引非顺序文件中的索引表为稠密索引。索引顺序文件中的索引表为稀疏索引。 若记录很大使得索引表也很大时,可对索引表再建立索引,称为查找表。是一种静态索引。 索引顺序文件常用的有两种: ·ISAM索引顺序存取方法:是专为磁盘存取文件设计的,采用静态索引结构。 ·VSAM虚拟存储存取方法:采用B+树作为动态索引结构,由索引集、顺序集、数据集组成。 散列文件是利用散列存储方式组织的文件,亦称为直接存取文件。 散列文件 ·优点是:文件随机存放,记录不需要排序;插入删除方便;存取速度快;不需要索引区,节省存储空间。 ·缺点是:不能进行顺序存取,只能按关键字随机存取,且询问方式限地简单询问,需要重新组织文件。 多重表文件:对需要查询的次关键字建立相应的索引,对相同次关键字的记录建一个链表并将链表头指针、长度、次关键字作为索引表的索引项。 倒排表:次关键字索引表称倒排表,主文件和倒排表构成倒排文件。

大数据时代自学考试数据管理

立足数据中心运维管理的现状,顺应时代发展的潮流,充分利用信息技术的机遇,利用现有资源对数据中心的运维管理加强完善和创新,为行业的发展,国家的进步贡献力量。

1.大数据时代数据中心运维管理的现状

大数据时代作为时代发展的机遇出现在大众视野,但是也是作为挑战逐步渗透在行业的数据中心运维管理中。以计算机技术为依托的数据中心运维管理的显著特点就是大规模的数据流量,正在不断与原有的数据中心架构产生冲突。

目前,大数据时代的数据中心运维管理的先进意识已经深入人心,但是实际项目操作过程中会有众多的问题出现。因为在磨合期,所以现有设备不能满足大数据时代的数据中心管理要求;运维管理人员的没有经过大数据时代新的运维管理思路的熏陶,技术水平与之不匹配;还有就是数据中心的运维管理制度不都完善,相应的管理水平不高。

2.解决数据中心运维管理困境的策略

针对目前数据中心运维管理的困境,本文提出了相应的解决策略,以供业界参考。

2.1 提升运维管理人员的整体能力

基于目前数据中心运维管理工作人员的实际能力,通过采取以下积极的措施来提升运维管理工作人员的综合能力水平。

2.1.1 大数据背景下,强化数据中心运维管理人员的技术应用水平

通过多维度的检验途径,比如定期检查该技术的理论与实践水平确定工作人员的当前能力,在制定符合目前技术短板的相关培训,从而保证运维管理工作的顺利进行。

2.1.2 加强管理方面的知识渗透

在加强数据中心运维管理人员的技术应用水平的前提下,可以加强管理学知识的渗透,为技术团队的整体语言表达能力的提升以及为管理层储备后续力量,既懂技术又懂管理的新世纪人才,有助于数据中心运维管理工作更加高质量的完成。

2.1.3 加强工作人员执行力,更高效的完成工作

在数据中心运维管理的众多评价标准中,执行力是影响一个团队整体运作能力很重要的一个指标,良好的执行力可以保证时间段内的工作目标提前完成或者超量完成。

2.2 强化业务管理工作和业务培训工作

现如今,科学技术的更新速度往往超出人们的接受速度,在数据中心运维管理这个领域也同样适用。所以使得运维管理人员刚刚熟练掌握新的运维既能并熟练应用,新的技术又刷新了行业应用领域。所以设立专门的培训机构,强化管理人员终身学习的意识,紧跟时代发展的脚步。

2.2.1 制定合理的业务培训和业务管理培训计划

科学合理的方案总能给与人们正确的指导,并保证在规定期限内达到既定目标。运维管理培训和业务培训的内容要与时俱进,不断为管理人员灌输新的知识,为运维管理的工作融入新鲜的血液。

2.2.2 合理安排培训时间

运维工作人员在企业内是员工,男性员工在家庭里是儿子,是丈夫,是爸爸,所以要协调好培训的时间,保证员工能充分解决员工之外的各种事情,全身心的投入工作。

2.2.3 使业务管理和业务培训的形式呈现多元化

公司管理层应加强与行业内部个组织间的联系,比如同专业的大学、同行业资深专家、专业讲座等等。通过多元形式的学习加深对行业发展的了解,并积极促进管理人员的专业素养。

2.2.4 定期进行培训效果的考核

在定期进行学习之余,为检验学习效果是否达到预期目标,应适时进行检验,进一步促进运维工作人员的学习质量的提升,提升其主观学习的动力。

总之,强化对运维工作人员的业务培训,能够有效地对运维工作者的维修技术进行与时俱进的培训,能够有利于运维管理工作人员进行数据中心运维管理工作的开展,最终有利于信息技术飞速发展下的运维工作的稳定进行。

2.3 加强了解整体行业环境的意识

有些企业的运维管理的硬件设施和软件配备欠缺,造成整体的管理水平低,是因为企业没有采取相应的举措保障。以下将详细讲述如何提升整体行业环境的了解。

(2)定期组织团队中的成员进行行业发展前景的探讨,在探讨交流的过程中了解当下运维管理工作的总趋势,从而能够为运维工作的有效进行提供有价值的参考意见。

总之,强化了解和分析业务环境的意识,能够有利于运维管理工作人员有行业的危机意识和行业的发展意识以及个人职业规划意识的提升,最终有利于大数据时代数据中心运维管理工作的顺利开展。

3.大数据时代下,技术层面面临的挑战

3.1动力环境监控系统概述

通过应用数据采集系统,计算机和网络技术,逐步完成数据中心运维管理动力电源供电设备的运行和机房的监控的平台就是数据中心动力环境监控系统。

3.2 动力环境监控数据的特点。

通过采集数据中心的关键指标数据,针对实际运行情况实现预警功能、远程功能以及运行监测功能。动力环境监控数据具有其本身特点。

3.2.1 数据结构化、格式化程度高

因系统采集到的实时监控数据大都存储于数据库中,因而动环监控数据结构化、格式化程度高,这也为数据挖掘提供了便利。

3.2.2 实时更新

动力环境监控系统运行的最底保证便是数据的准确性和实时更新,其数据采集的更新时间间隔为每秒。

3.2.3 时序性

动力环境监控系统实时记录的环境温度、环境湿度等数据都是随时间更替而进行采集的。

3.3 数据挖掘提高告警信息准确性

动力监控系统是以计算机为载体,以信息技术为依托的技术,所以其产生的大规模数据也是大数据时代一个突出的特点。就目前而言大规模的数量利用率较低,即使专业水准较高的管理人员也会深感难度高、工作量大,与现有的技术水平不能完好对接。

数据挖掘技术的出现解决了目前的难题。数据挖掘中关联分析方法解决了数据中心运维管理中不明原因的重复警报,为运维管理的工作有序进行提供了基础,并为专业水平较低的运维人员提升了工作效率。

3.3 运维经验知识化的工作模式需要改进

据以往的运维工作人员的叙述,过度依赖专家给与的指导经验,成为行业内部的不良风气。首先运维专家的培养周期较长,短时间没有任何效益输出;其次专家的意见偶尔会带有强烈的主管色彩,但是对于实际操作过程并不适用,最终导致工作的延误;最后就是过度依赖专家,若运维专家不在职装天下将会对运维管理工作造成重创,不具有可持续性。

所以建立关于数据中心运维管理的内部数据和外部数据,为现有的运维人员过度依赖专家的不良习惯提出解决方案。内部数据主要是指内部运维经验;外部数据是指来源于互联网的运维知识。对于收集到的内外部数据,利用文本挖掘、聚类、分类预测等方法对信息进行加工展现,转化成知识库中的知识,并实现对信息的快速、自动化检索。

3.4 资源调度成为容量管理的关键

在大数据时代下,数据中心存储容量指标是指机位空间指标等,尤其是计算资源指标,是其组成的关键部分。需要最新的数据中心运维管理平台实现监测服务器、使用网络以及存储资源等功能,根据实际情况进行管理策略的变动和资源的优化配置。

云计算技术已成为数据中心运维管理的核心,并打破传统的数据运维管理信息系统结构,建立一个全新的集计算、存储、和网络三维一体的虚拟资源库,通过实际的操作,实现现有资源的动态优化配置。

虚拟化技术可以保证存储环节中大规模数据的安全性,在逐步实现数据资源的重复使用、关联以及动态管理等动能的同时,也为运维管理人员提出了巨大的挑战。故此,通过科学合理的分析容量数据,构建完善的资源调度制度,实现实现新一代数据中心资源在应用间的动态分配,将成为大数据时代下数据中心运维管理的一大挑战。

4.结束语

为顺应大数据时代的潮流,必须进行数据中心运维管理的深度优化,为数据中心的整体发展提供新鲜的 科技 动力。通过提升运维管理人员各方面的能力还有利用先进的动力环境监控系统技术,为数据中心的运维管理提供强大的人力支持和技术支持,助力大数据时代背景下,数据中心运维管理的长足发展。

参考文献

[1]朱玉立,任义延,高甲子等,浅谈大数据时代下的数据中心运维管理[J].信息系.统工程,2015.

[2]解林超,石佳,王仲锋等。大数据时代对传统数据中心的影响及思考[J].中国新通信,2014.

[3]周焘。大数据时代的档案大编研[J].陕西档案,2014.

[4]陈艺高,动环大数据,提升运维效能[J].通信电源技术,2014.

[5]张隽轩,张文利,黄毅。数据中心运维系统应用ITIL管理体系分析[J].智能建筑与城市信息,2015.

[6]宋维佳,马皓,肖臻,张晓军,张蓓.虚拟化数据中心资源调度研究[J].广西大学学报:自然科学版,2011,36(01):330-334.

有很多呀,应用商店你可以找

你采纳我,我发给你。

科学管理理论。

大数据时代,科技创新越来越依赖于科学数据综合分析,当代科学技术发展呈现出明显的大科学、定量化研究特点,高可信度的科学数据,对科学数据的综合分析,本身就是科技创新的一种方式。

一些科研团队中也出现了专门从事科学数据管理和应用的人员,负责科学数据的收集、整理和分析等,海量科学数据对生命科学、天文学、空间科学、地球科学、物理学等多个学科领域的科研活动更是带来了冲击性的影响,科学研究方法发生了重要的变革。

当前我国正处于实施创新驱动发展战略和建设科技强国的关键时期,加强和规范科学数据管理是加强我国科技创新能力建设和保障国家安全的重要方式和手段。

因此,在国家层面发布加强和规范科学数据管理的政策制度,推动科学数据开放共享,对于服务科技创新、提升政府公共服务能力和发展共享经济等方面具有重要意义。

扩展资料:

针对科学数据利用率不高的问题,《办法》提出了三项措施如下:

1、实行清单管理制度,由主管部门组织编制科学数据资源目录。

2、鼓励科研人员整理形成产权清晰、完整准确、共享价值高的科学数据。

3、是在数据共享过程中,原则上对公益性事业及公益性科学研究无偿提供,确需收费的应按照规定程序和不盈利原则制定合理的收费标准;对商业活动利用数据的通过协商约定。

参考资料:人民网-科学数据,如何科学管理

自学考试数据库

第三章 关系数据库SQL语言 本章为重点章,应熟悉和掌握SQL的数据定义、数据查询、数据更新的句法及其应用,特别是数据查询的应用。结合上机操作进行理解和掌握。 一、SQL概述。 1、SQL发展历程( 识记 ) SQL从1970年美国IBM研究中心的E.F.Codd发表论文到1974年Boyce和Chamberlin把SQUARE语言改为SEQUEL语言,到现在还在不断完善和发展之中,SQL(结构式查询语言)虽然名为查询,但实际上具有定义、查询、更新和控制等多种功能。 2、SQL数据库的体系结构( 领会 ) SQL数据库的体系结构也是三级结构 ,但术语与传统关系模型术语不同,在SQL中,关系模式称为“ 基本表 ”,存储模式称为“ 存储文件 ”,子模式称为“ 视图 ”,元组称“ 行 ”,属性称“ 列 ”。 SQL数据库体系的结构要点如下: (1)一个SQL数据库是表的汇集。 (2)一个SQL表由行集构成,行是列的序列,每列对应一个数据项。 (3)表或者是基本表,或者是视图。基本表是实际存储在数据库中的表,视图由是由若干基本表或其他视图构成的表的定义。 (4)一个基本表可以跨一个或多个存储文件,一个存储文件也可存放一个或多个基本表。存储文件与物理文件对应。 (5)用户可以用SQL语句对表进行操作,包括视图和基本表。 (6)SQL的用户可以是应用程序,也可以是终端用户。 3、SQL的组成( 识记 ) SQL由四部分组成: (1)数据定义:SQL DDL.定义SQL模式,基本表、视图和索引。 (2)数据操纵:SQL DML.包括数据查询和数据更新(增、删、改)。 (3)数据控制:包括对基本表和视图的授权、完整性规则的描述,事务控制等。 (4)嵌入式SQL的使用规定。 二、SQL的数据定义( 简单应用 ) 1、SQL模式的创建和撤消: SQL 模式的创建 可简单理解为建立一个数据库,定义一个存储空间,其句法是: CREAT SCHEMA 模式名> AUTHORIZATION 用户名> 撤消SQL模式的句法为: DROP SCHEMA 模式名> [ CASCADE | RESTRICT ] 方括号中的选项参数CASCADE表示连锁方式,执行时将模式下所有基本表、视图、索引等元素全部撤消。RESTRICT表示约束式,执行时必须在SQL模式中没有任何下属元素时方可撤消模式。 2、SQL提供的基本数据类型 数值型:包括 integer、smallint、real、double precision 、float(n),numeric(p,d) 字符串型:char(n)、varchar(n),前者是定长,后者为变长串 位串型:bit(n),bit varying(n),同上。 时间型:date、time. 3、基本表的创建、修改和撤消 基本表的创建:(可理解为建立表结构) CREAT TABLE SQL 模式名。基本表名 (列名,类型, …… 完整性约束……) 完整性约束包括主键子句(PRIMARY KEY)、检查子句(CHECK)和外键子句(Foreign KEY)。 基本表结构的修改 ALTER TABLE 基本表名 ADD/ DROP (增加/删除) 列名 类型名(增加时写出) 删除时有子句 [CASCADE|RESTRICT],前者为连锁删除,后者为约束删除,即没有对本列的任何引用时才能删除。 基本表的撤消 DROP TABLE 基本表名 [CASCADE|RESTRICT] 4、视图的创建和撤消 创建: CREAT VIEW 视图名(列名表) AS SELECT 查询语句 撤消: DROP VIEW 视图名 5、索引的创建和撤消 创建: CREAT [UNIQUE] INDEX 索引名 ON 基本表名(列名表 [ASC|DESC]) 撤消: DROP INDEX 索引名 总结:凡创建都用 CREAT ,删除都用 DROP ,改变用 alter ,再跟类型和名字,附加子句很容易了。 三、SQL的数据查询( 综合应用 ) 这一段是本章的重点内容,应该熟练掌握。首先了解基本句法: 1、 SELECT -FROM- WHERE 句型 SELECT 列名表(逗号隔开) FROM 基本表或视图序列 WHERE 条件表达式 在这里,重点要掌握条件表达式中各种运算符的应用,如=,>,<,>等算术比较运算符、逻辑运算符 AND、OR、NOT 、集合成员资格运算符: IN,NOT IN ,以及嵌套的 SELECT 语句的用法要特别注意理解。 针对课本的例题和课后习题进行掌握。 在查询时, SELECT 语句可以有多种写法,如 联接查询、嵌套查询和使用存在量词的嵌套查询 等。都掌握,但是起码应能写出一种正确的查询语句。 2. SELECT 语句完整的句法: SELECT 列名表(逗号隔开) FROM 基本表或视图序列 [ WHERE 条件表达式] (此为和条件子句) [GROUP BY 列名序列] (分组子句) [HAVING 组条件表达式] (组条件子句) [ORDER BY列名[ASC|DESC]……] (排序子句) 这段关于完整句法的内容能够理解也就问题不大了。 3、 SELECT 语句中的限定 这一段内容主要是对 SELECT 语句进一步使用进行的深入学习,领会下列各种限定的使用目的和方法。 要求输出表格中不出现重复元组,则在 SELECT 后加一DISTINCT SELECT 子句中允许出现加减乘除及列名,常数的算术表达式 WHERE 子句中可以用BETWEEN……AND……来限定一个值的范围 同一个基本表在 SELECT 语句中多次引用时可用AS来增加别名 WHERE 子句中字符串匹配用LIKE和两个通配符,%和下划线_. 查询结果的结构完全一致时可将两个查询进行并(UNION)交(INTERSECT)差(EXCPT)操作 查询空值操作不是用='null',而是用 IS NULL来测试。 集合成员资格比较用 IN/NOT IN ,集合成员算术比较用元组θSOME/ALL 可以用子查询结果取名(表名(列名序列))来作为导出表使用 基本表的自然联接操作是用 NATURAL INNER JOIN来实现的。 四、SQL的数据更新( 简单应用 ) 简单应用就是掌握基本的句型并能套用在一些简单的查询要求上。 1、数据插入: INSERT INTO 基本表名(列名表) valueS (元组值) 或 INSERT INTO 基本表名(列名表) SELECT 查询语句 其中元组值可以连续插入。用查询语句可以按要求插入所需数据。 2、数据删除: DELETE FROM 基本表名 [ WHERE 条件表达式] 3、数据修改: UPDATE 基本表名 SET 列名=值表达式,[列名=值表达式……] [ WHERE 条件表达式] 4、对视图的更新: 我们知道,对视图的查询是和基本表相同的,但是更新操作则受到下列三条规则的限制:(领会一下) 如果视图是从多个基本表使用联接操作导出的,则不允许更新。 如果导出的视图使用了分组和聚合操作,也不允许更新。 如果视图是从单个基本表使用选择和投影操作导出的,并且包括了基本表的主键或某个候选键,则可以执行操作。(这就相当于在基本表上操作)。 这一节的关于增删改的操作要和前面关于数据库模式、表的增删改操作进行对比学习,以加深理解。不要忘记上机实践 .

数据库基本概念:

数据库管理技术发展:

数据库系统的结构:

数据库自学考试

第三章 关系数据库SQL语言 本章为重点章,应熟悉和掌握SQL的数据定义、数据查询、数据更新的句法及其应用,特别是数据查询的应用。结合上机操作进行理解和掌握。 一、SQL概述。 1、SQL发展历程( 识记 ) SQL从1970年美国IBM研究中心的E.F.Codd发表论文到1974年Boyce和Chamberlin把SQUARE语言改为SEQUEL语言,到现在还在不断完善和发展之中,SQL(结构式查询语言)虽然名为查询,但实际上具有定义、查询、更新和控制等多种功能。 2、SQL数据库的体系结构( 领会 ) SQL数据库的体系结构也是三级结构 ,但术语与传统关系模型术语不同,在SQL中,关系模式称为“ 基本表 ”,存储模式称为“ 存储文件 ”,子模式称为“ 视图 ”,元组称“ 行 ”,属性称“ 列 ”。 SQL数据库体系的结构要点如下: (1)一个SQL数据库是表的汇集。 (2)一个SQL表由行集构成,行是列的序列,每列对应一个数据项。 (3)表或者是基本表,或者是视图。基本表是实际存储在数据库中的表,视图由是由若干基本表或其他视图构成的表的定义。 (4)一个基本表可以跨一个或多个存储文件,一个存储文件也可存放一个或多个基本表。存储文件与物理文件对应。 (5)用户可以用SQL语句对表进行操作,包括视图和基本表。 (6)SQL的用户可以是应用程序,也可以是终端用户。 3、SQL的组成( 识记 ) SQL由四部分组成: (1)数据定义:SQL DDL.定义SQL模式,基本表、视图和索引。 (2)数据操纵:SQL DML.包括数据查询和数据更新(增、删、改)。 (3)数据控制:包括对基本表和视图的授权、完整性规则的描述,事务控制等。 (4)嵌入式SQL的使用规定。 二、SQL的数据定义( 简单应用 ) 1、SQL模式的创建和撤消: SQL 模式的创建 可简单理解为建立一个数据库,定义一个存储空间,其句法是: CREAT SCHEMA 模式名> AUTHORIZATION 用户名> 撤消SQL模式的句法为: DROP SCHEMA 模式名> [ CASCADE | RESTRICT ] 方括号中的选项参数CASCADE表示连锁方式,执行时将模式下所有基本表、视图、索引等元素全部撤消。RESTRICT表示约束式,执行时必须在SQL模式中没有任何下属元素时方可撤消模式。 2、SQL提供的基本数据类型 数值型:包括 integer、smallint、real、double precision 、float(n),numeric(p,d) 字符串型:char(n)、varchar(n),前者是定长,后者为变长串 位串型:bit(n),bit varying(n),同上。 时间型:date、time. 3、基本表的创建、修改和撤消 基本表的创建:(可理解为建立表结构) CREAT TABLE SQL 模式名。基本表名 (列名,类型, …… 完整性约束……) 完整性约束包括主键子句(PRIMARY KEY)、检查子句(CHECK)和外键子句(Foreign KEY)。 基本表结构的修改 ALTER TABLE 基本表名 ADD/ DROP (增加/删除) 列名 类型名(增加时写出) 删除时有子句 [CASCADE|RESTRICT],前者为连锁删除,后者为约束删除,即没有对本列的任何引用时才能删除。 基本表的撤消 DROP TABLE 基本表名 [CASCADE|RESTRICT] 4、视图的创建和撤消 创建: CREAT VIEW 视图名(列名表) AS SELECT 查询语句 撤消: DROP VIEW 视图名 5、索引的创建和撤消 创建: CREAT [UNIQUE] INDEX 索引名 ON 基本表名(列名表 [ASC|DESC]) 撤消: DROP INDEX 索引名 总结:凡创建都用 CREAT ,删除都用 DROP ,改变用 alter ,再跟类型和名字,附加子句很容易了。 三、SQL的数据查询( 综合应用 ) 这一段是本章的重点内容,应该熟练掌握。首先了解基本句法: 1、 SELECT -FROM- WHERE 句型 SELECT 列名表(逗号隔开) FROM 基本表或视图序列 WHERE 条件表达式 在这里,重点要掌握条件表达式中各种运算符的应用,如=,>,<,>等算术比较运算符、逻辑运算符 AND、OR、NOT 、集合成员资格运算符: IN,NOT IN ,以及嵌套的 SELECT 语句的用法要特别注意理解。 针对课本的例题和课后习题进行掌握。 在查询时, SELECT 语句可以有多种写法,如 联接查询、嵌套查询和使用存在量词的嵌套查询 等。都掌握,但是起码应能写出一种正确的查询语句。 2. SELECT 语句完整的句法: SELECT 列名表(逗号隔开) FROM 基本表或视图序列 [ WHERE 条件表达式] (此为和条件子句) [GROUP BY 列名序列] (分组子句) [HAVING 组条件表达式] (组条件子句) [ORDER BY列名[ASC|DESC]……] (排序子句) 这段关于完整句法的内容能够理解也就问题不大了。 3、 SELECT 语句中的限定 这一段内容主要是对 SELECT 语句进一步使用进行的深入学习,领会下列各种限定的使用目的和方法。 要求输出表格中不出现重复元组,则在 SELECT 后加一DISTINCT SELECT 子句中允许出现加减乘除及列名,常数的算术表达式 WHERE 子句中可以用BETWEEN……AND……来限定一个值的范围 同一个基本表在 SELECT 语句中多次引用时可用AS来增加别名 WHERE 子句中字符串匹配用LIKE和两个通配符,%和下划线_. 查询结果的结构完全一致时可将两个查询进行并(UNION)交(INTERSECT)差(EXCPT)操作 查询空值操作不是用='null',而是用 IS NULL来测试。 集合成员资格比较用 IN/NOT IN ,集合成员算术比较用元组θSOME/ALL 可以用子查询结果取名(表名(列名序列))来作为导出表使用 基本表的自然联接操作是用 NATURAL INNER JOIN来实现的。 四、SQL的数据更新( 简单应用 ) 简单应用就是掌握基本的句型并能套用在一些简单的查询要求上。 1、数据插入: INSERT INTO 基本表名(列名表) valueS (元组值) 或 INSERT INTO 基本表名(列名表) SELECT 查询语句 其中元组值可以连续插入。用查询语句可以按要求插入所需数据。 2、数据删除: DELETE FROM 基本表名 [ WHERE 条件表达式] 3、数据修改: UPDATE 基本表名 SET 列名=值表达式,[列名=值表达式……] [ WHERE 条件表达式] 4、对视图的更新: 我们知道,对视图的查询是和基本表相同的,但是更新操作则受到下列三条规则的限制:(领会一下) 如果视图是从多个基本表使用联接操作导出的,则不允许更新。 如果导出的视图使用了分组和聚合操作,也不允许更新。 如果视图是从单个基本表使用选择和投影操作导出的,并且包括了基本表的主键或某个候选键,则可以执行操作。(这就相当于在基本表上操作)。 这一节的关于增删改的操作要和前面关于数据库模式、表的增删改操作进行对比学习,以加深理解。不要忘记上机实践 .

数据库基本概念:

数据库管理技术发展:

数据库系统的结构:

  •   索引序列
  •   自学考试学位数据
  •   自学考试数据
  •   大数据时代自学考试数据管理
  •   自学考试数据库
  •   数据库自学考试
  •   返回顶部

自考地区