自考问答 自考本科自考百科
  • 回答数

    2

  • 浏览数

    358

meimeimilly
自考问答 > 自考本科 > 线性代数自考知识点汇总图

2个回答 默认排序
  • 默认排序
  • 按时间排序

坚强的T123

已采纳

线性代数知识点总结

线性代数知识在学习的几个阶段都有相关的知识点出现,下面线性代数知识点总结是我为大家整理的,在这里跟大家分享一下。

线性代数在考研数学中占有重要地位,必须予以高度重视。线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,太奇考研专家们提醒广大的2013年的考生们必须注重计算能力。线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对2012年考研的同学们学习有帮助。

行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现。行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握。常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算。关于每个重要题型的具体方法以及例题见《20xx年全国硕士研究生入学统一考试数学120种常考题型精解》。

矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。这几年还经常出现有关初等变换与初等矩阵的命题。常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。

向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解。常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。

往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。

特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。

由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法。重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

一、行列式与矩阵

行列式、矩阵是线性代数中的基础章节,从命题人的角度来看,可以像润滑油一般结合其它章节出题,因此必须熟练掌握。

行列式的核心内容是求行列式——具体行列式的计算和抽象行列式的计算。其中具体行列式的计算又有低阶和高阶两种类型,主要方法是应用行列式的性质及按行(列)展开定理化为上下三角行列式求解;而对于抽象行列式而言,考点不在如何求行列式,而在于结合后面章节内容的相对综合的题。

矩阵部分出题很灵活,频繁出现的知识点包括矩阵各种运算律、矩阵的基本性质、矩阵可逆的判定及求逆、矩阵的秩、初等矩阵等。

二、向量与线性方程组

向量与线性方程组是整个线性代数部分的核心内容。相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

这部分的重要考点一是线性方程组所具有的两种形式——矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。

(1)齐次线性方程组与向量线性相关、无关的联系

齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立——印证了向量部分的一条性质“零向量可由任何向量线性表示”。

齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。故向量与线性方程组在此又产生了联系——齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。

(2)齐次线性方程组的解与秩和极大无关组的联系

同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。秩的定义是“极大线性无关组中的向量个数”。经过“秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系)线性表示。

(3)非齐次线性方程组与线性表出的联系

非齐次线性方程组是否有解对应于向量是否可由列向量

三、特征值与特征向量

相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关性,“牵一发而动全身”。

本章知识要点如下:

1、特征值和特征向量的定义及计算方法就是记牢一系列公式和性质。

2、相似矩阵及其性质,需要区分矩阵的相似、等价与合同:

3、矩阵可相似对角化的条件,包括两个充要条件和两个充分条件。充要条件一是n阶矩阵有n个线性无关的特征值;二是任意r重特征根对应有r个线性无关的特征向量。

4、实对称矩阵及其相似对角化,n阶实对称矩阵必可正交相似于以其特征值为对角元素的对角阵。

四、二次型

这部分所讲的内容从根本上讲是特征值和特征向量的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵,必存在正交矩阵,使其可以相似对角化”,其过程就是上一章实对称矩阵相似对角化的应用。

本章核心要点如下:

1、用正交变换化二次型为标准型。

2、正定二次型的判断与证明。

线性代数的学习切入点是线性方程组。换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。

线性方程组

线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。

关于线性方程组的解,有三个问题值得讨论:

1、方程组是否有解,即解的存在性问题;

2、方程组如何求解,有多少个;

3、方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。

高斯消元法

这最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:

1、把某个方程的k倍加到另外一个方程上去;

2、交换某两个方程的位置;

3、用某个常数k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。

任意的线性方程组都可以通过初等变换化为阶梯形方程组。

由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。

对方程组的解起决定性作用的是未知数的系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的情况。我们把这样一张由若干个数按某种方式构成的表称为矩阵。

可以用矩阵的形式来表示一个线性方程组,这至少在书写和表达上都更加简洁。

系数矩阵和增广矩阵

高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。阶梯形方程组,对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。

阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。

对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现d=0这一项,则方程组无解,若未出现d=0一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解;若r

在利用初等变换得到阶梯型后,还可进一步得到最简形,使用最简形,最简形的特点是主元上方的元素也全为零,这对于求解未知量的值更加方便,但代价是之前需要经过更多的初等变换。在求解过程中,选择阶梯形还是最简形,取决于个人习惯。

齐次方程组

常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。

齐次方程组的方程组个数若小于未知量个数,则方程组一定有非零解。

利用高斯消元法和解的判别定理,以及能够回答前述的基本问题:解的存在性问题和如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。

对于n个方程n个未知数的特殊情形,我们发现可以利用系数的某种组合来表示其解,这种按特定规则表示的系数组合称为一个线性方程组(或矩阵)的行列式。行列式的特点:有n!项,每项的符号由角标排列的逆序数决定,是一个数。

通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等),这些性质都有助于我们更方便的计算行列式。

用系数行列式可以判断n个方程的n元线性方程组的解的情况,这就是克莱姆法则。

总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容。

线性代数占考研数学总分值的22%,约34分,以2个选择题、1个填空题、2个解答题的形式出现。虽然线性代数的考点众多,但要把这5个题目的分值完全收入囊中,则需要进行重点题型重点突破。

矩阵的秩

矩阵是解决线性方程组的解的有力工具,矩阵也是化简二次型的方便工具。矩阵理论是线性代数的重点内容,熟悉掌握了矩阵的相关性质与内容,利用其来解决实际应用问题就变得简单易行。正因为矩阵理论在整个线性代数中的重要作用,使它变为考试考查的重点。矩阵由那么多元素组成,每一个元素都在扮演不同的角色,其中的核心或主角是它的秩!

通过几十年考研考试命题,命题老师对题目的形式在不断地完善,这也要求大家深入理解概念,灵活处理理论之间的关系,能变通地解答题目。例如对矩阵秩的理解,对矩阵的秩与向量组的秩之间的关系的理解,对矩阵等价与向量组等价之间区别的理解,对矩阵的秩与方程组的解之间关系的掌握,对含参数的矩阵的处理以及反问题的解决能力等,都需要在对概念理解的基础上,联系地看问题,及时总结结论。

矩阵的特征值与特征向量

矩阵的特征值与特征向量在将矩阵对角化过程中起着决定作用,也是将二次型标准化、规范化的便捷方式,故特征值与特征向量也是考查重点。对于特征值与特征向量,须理清其相互关系,也须能根据一些矩阵的特殊性求得其特征值与特征向量(例如根据矩阵各行元素之和为3能够判断3是其一个特征值,元素均为1的列向量是其对应的特征向量),会处理含参数的情况。

线性方程组求解

对线性方程组的求解总是通过矩阵来处理,含参数的方程组是考查的重点,对方程组解的`结构及有解的条件须熟悉。例如2010年第20题(数学二为22题),已知三元非齐次线性方程组存在2个不同的解,求其中的参数并求方程组的通解。此题的关键是确定参数!而所有信息完全隐含在"AX=b存在2个不同的解"这句话中。由此可以得到齐次方程组有非0解,系数矩阵降秩,行列式为0,可求得矩阵中的参数;非齐次方程组有解故系数矩阵与增广矩阵同秩可确定唯一参数及b中的参数。至于确定参数后再求解非齐次方程组就变得非常简单了。

二次型标准化与正定判断

二次型的标准化与矩阵对角化紧密相连,即与矩阵的特征值与特征向量紧密联系。这里需要掌握一些处理含参数矩阵的方法以便运算中节省时间。正定二次型有很优秀的性质,但毕竟这是一类特殊矩阵,判断一个矩阵是否属于这个特殊类,可以使用正定矩阵的几个充要条件,例如二次型矩阵的特征值是否全大于0,顺序主子式是否均大于0等,但前者更常用一些。

历年考研数学真题解析线性代数命题特点解析

考研数学是研究生招生入学考试中通过笔试的形式对考生数学功底的考查,从近几年的考研数学历年真题分析结果来看,可以得出一个结论:线性代数的难度在高数和概率统计之间,且大多数的同学认为线性代数试题难度不大,就是计算量稍微偏大点,线代代数的考查是对基本方法的考查,但是往往在做题过程中需要利用一些性质进行辅助解决。

线性代数的学科特点是知识点之间的综合性比较强,这也是它本身的一个难点。这就需要同学们在复习过程中,注意对于知识点间的关联性进行对比着学习,有助于巩固知识点且不易混淆。

总体来说,线性代数主要包括六部分的内容,行列式、矩阵、向量、线性方程组、特征值与特征向量、二次型。

一、行列式部分,熟练掌握行列式的计算。

行列式实质上是一个数或含有字母的式子,如何把这个数算出来,一般情况下很少用行列式的定义进行求解,而往往采用行列式的性质将其化成上或下三角行列式进行计算,或是采用降阶法(按行或按列展开定理),甚至有时两种方法同时用。此外范德蒙行列式也是需要掌握的。行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等等。同学们只要掌握了基本方法即可。

二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用 。

通过考研数学历年真题分类统计与考点分布,矩阵部分的考点集中在逆矩阵、伴随矩阵、矩阵的秩及矩阵方程的考查。此外,含随矩阵的矩阵方程,矩阵与行列式的关系、逆矩阵的求法也是考生需要掌握的知识点。涉及秩的应用,包含秩与矩阵可逆的关系,矩阵及其伴随矩阵秩之间的关系,矩阵的秩与向量组的秩之间的关系,矩阵等价与向量组等价的区别与联系,系数矩阵的秩与方程组的解之间关系的分析。

三、向量部分,理解相关无关概念,灵活进行判定。

向量组的线性相关问题是向量部分的重中之重,也是考研线性代数每年必出的考点。要求考生掌握线性相关、线性表出、线性无关的定义。以及如何判断向量组线性相关及线性无关的方法。 向量组的秩和极大无关组以及向量组等价这些重要的知识点要求同学们一定一定掌握到位。

这是线性代数前三个内容的命题特点,而行列式的矩阵是整个线性代数的基础,对于行列式的计算及矩阵的运算与一些重要的性质与结论请考生朋友们一定要务必掌握,否则的话,对于后面四部分的学习会越学越难,希望同学们在复习过程中一定注意前面内容的复习,为后面的考研数学复习打好基础。

前面我们已经分析过,考研数学线性代数这门学科整体的特点是知识点之间的综合性比较强,有些概念较为抽象,这也是大部分考生认为考研数学线性代数不好学,根本找不到复习的头绪,做题时也是一头雾水,不知道怎么分析考虑。

这里,老师要求大家在学习过程中一定要注意知识间之间的关联性,理解概率的实质。如:矩阵的秩与向量组的秩之间的关联,矩阵等价与向量组等价的区别,矩阵等价、相似、合同三者之间的区别与联系、矩阵相似对角化与实对称矩阵正交变换对角化二者之间的区别与联系等等。若是同学们对于上面的问题根本分不清楚,则说明大家对于基本概念、基本方法还没有完全理解透彻。不过,大家也不要太焦急,希望同学们在后期的复习过程中对于基本概念、基本方法要多加理解和体会,学习一定要有心得。

下面我们分析一下后面三部分的内容,线性方程组、特征值与特征向量、二次型的命题特点。

线性方程组,会求两类方程组的解。线性方程组是线性代数这么学科的核心和枢纽,很多问题的解决都离不开解方程组。因而线性方程组解的问题是每年必考的知识点。对于齐次线性方程组,我们需要掌握基础解系的概念,以及如何求一个方程组的基础解系。清楚明了基础解系所含线性无关解向量的个数和系数矩阵的秩之间的关系。会判断非齐次线性方程组的解的情况,掌握其求解的方法。此外,考生还需要掌握非齐次线性方程组与其对应的齐次线性方程组的解结构之间的关系。

特征值与特征向量,掌握矩阵对角化的方法。这一部分是理论性较强的,理解特征值与特征向量的定义及性质,矩阵相似的定义,矩阵对角化的定义。同学们还需掌握求矩阵特征值与特征向量的基本方法。会判断一个矩阵是否可以对角化,若可以的话,需要把相应的可逆矩阵P求出来。还需要注意矩阵及其关联矩阵(转置、逆、伴随、相似)的特征值与特征向量的关系。反问题也是喜欢考查的一类题型,已知矩阵的特征值与特征向量,反求矩阵A。

二次型,理解二次型标准化的过程,掌握实对称矩阵的对角化。二次型几乎是每年必考的一道大题,一般考查的是采用正交变换法将二次型标准化。掌握二次型的标准形与规范型之间的区别与联系。会判断二次型是否正定的一般方法。讨论矩阵等价、相似、合同的关系。

虽然线性代数在考研数学考试试卷中仅有5题,占有34分的分值,但是这34分也不是很轻松就能拿下的。同学们在复习过程中需要对于基础知识点理解透彻,做考研数学题过程中多分析总结。

103 评论(11)

华兰欣子

8、行列式 8.1 什么是行列式? 首先方阵才有行列式,我们先来简单回顾一下2*2和3*3的矩阵的行列式: 那行列式代表什么含义呢?在二维平面中,矩阵行列式的绝对值代表一个平行四边形的面积,在三维空间中,矩阵行列式的绝对值代表一个平行六面体的体积: 8.2 行列式的性质 (1)单位矩阵的行列式为1 (2)交换任意的两行,行列式变号 (3)对任意一行来说,行列式是“线性”的 从ppt上不好翻译,但是看图是很直观的: 所以,下面的式子是正确的: 同时: (4)如果行列式有两行相等或者是倍数关系,行列式值为0 这个性质也是很直观的,交换两行变号嘛,但是交换的两行如果是一样的,那么行列式的值应该不变,-a=a那么a只能是0。 (5)对角矩阵的行列式等于对角线上元素的乘积 (6)如果一个方阵的行列式不为0,那么它是可逆的,反之,如果一个方阵可逆,那么它的行列式不为0 如果一个矩阵是可逆的,它可以经由初等变换得到单位矩阵,每一次初等变换得到的矩阵的行列式值,相当于对原矩阵的行列式值乘上一个标量。由于每次乘的标量不为0,所以可以得到原矩阵的行列式值不为0。 (7)det(AB)=det(A)*det(B) (8)矩阵转置的行列式和原矩阵相同 所以说,刚才的结论同样适用于列。即如果有两列相同或是倍数关系,行列式值同为0,同时每一列也是线性的。 8.3 行列式的计算 我们首先来介绍 余子式和代数余子式 ,一个矩阵的任意一个元素aij都有对应的余子式,它就是将第i行和第j列划掉之后所得到的矩阵的行列式,用det(Aij)表示: 而cij=(-1)i+jdet(Aij)被称为代数余子式。 根据代数余子式,我们可以得到计算行列式的公式如下: 举个3维的例子: 因此,对于一个方阵的行列式,它是n!项的和(n!是n个元素的全排列的个数),对于每一项,它是从每一行选择一个元素进行相乘,而这些元素分别属于不同列。 有了代数余子式,我们可以得到矩阵A的伴随矩阵。伴随矩阵中的每个元素是原矩阵中该位置元素的代数余子式: 我们可以进一步通过伴随矩阵和行列式值来计算矩阵的逆: 9、子空间 9.1 子空间 如果一个向量集合V满足三个条件:(1)包含零向量(2)如果u和v属于V,那么u+v也属于V(3)如果u属于V,c是一个标量,那么cu也属于V。就称这个向量集合V为 子空间(subspace) : 举个例子,下面的向量集合是一个子空间: 只有零向量的集合也是一个子空间,三条性质都满足。 9.2 零空间 对于一个矩阵A来说,使得Ax=0的所有x所组成的集合被称为矩阵A的 零空间(Null Space) : 9.3 列空间和行空间 列空间(Column Space) 是矩阵A的列所张成的空间, 行空间(Row Space) 是矩阵的行所张成的空间。 在将矩阵化简为行阶梯型之后,矩阵的列空间是改变的,而行空间不变。 好了,我们又可以添加一条判断线性方程组是否有解的条件了,即b是否在A的列空间中。 10、基Basis 10.1 什么是基Basis 假设V是Rn的一个子空间,能够张成空间V的一组线性无关的向量被称为 基(Basis) 。 对于一个矩阵来说,其主列是其列空间的基: 10.2 基的特性 基有如下的特性: (1)基是一个能张成空间V的数量最小的向量集合 如果一组向量S能够张成子空间V,那么基中包含的向量数目小于或等于S中向量的数目。 (2)基是空间中数量最多的线性无关的向量集合 如果子空间V的基中向量的数量是k,那么你不能找到比k个多的线性无关的向量集合。 (3)子空间中任意的两组基都包含相同数目的向量 这个如何证明呢? 1)假设子空间V中有两组基A和B,个数分别是k和p; 2)因为A是子空间中的基,所以B中的所有向量都可以表示成A中向量的线性组合,即有AC=B,C的列数为p,行数是k; 3)假设存在一个p维向量x使得Cx=0,所以ACx=Bx=0因为B是基,所以Bx=0的解只能是零向量,所以C也是线性无关的; 4)因为C中的列向量是k维的,p个k维的向量线性无关,所以一定有p<=k; 5)同理k<=p,所以最终k=p,即A和B中向量的个数是相同的。 (4)子空间V的基的向量的数量被称为V的维度(dimension) 10.3 判断一个集合是否为基 通过定义,我们可以判断一个集合是否为基,需满足两个条件,向量之间线性无关,同时能够张成空间V,前者容易判断,后者较难判断: 另一种思路,假设对于一个子空间V,我们已经知道它的维度为2,如果S是一个包含k个vector并且属于V的一个子集,那么如果 1)S中的向量线性无关,那么S是一个基 2)S能够张成空间V,那么S是一个基 10.4 三种空间的基和维度 我们之前介绍过对于一个矩阵的三个空间,行空间、列空间以及零空间,他们的基以及维度都是多少呢? A的列空间 A的列空间的基是主列组成的集合,维度就是主列的个数 A的零空间 A的零空间的的维度是Ax=0中自由变量的个数,基看下面的图片: A的行空间 A的行空间的维度是化简为简约行阶梯型之后非零行的个数,基就是简约行阶梯型中先导元素所在的行所组成集合。 这里我们可以得出一个结论,矩阵A和其转置的秩相等: 总结一下就是下面这样子啦: 11、坐标系 11.1 使用基表示向量 在n维空间中,我们可以使用基向量来表示坐标系,这样空间中的任意向量的坐标都确定了,但是对于同一向量,使用不同的坐标系,其坐标是不同的: 同理,在不同坐标系下,同一个坐标所代表的向量也不同: 当基确定时,一个向量的坐标也是唯一的,由于基之间是线性无关的,因此证明如下: 在某一坐标系 B 下,一个向量可以表示成其对应的坐标表示: 而我们最为常用的一种坐标系就是直角坐标系(Cartesian coordinate system),通常表示如下: 那么根据任意坐标系以及某一向量在该坐标系下的坐标,如何得到该向量呢?很简单,该向量可以表示成基的线性组合,系数即为其坐标: 那么,如何得到某一向量在任意坐标系下的坐标,两边同乘B-1即可: 11.2 直角坐标系和其他坐标系的转换 其实我们的向量就是在直角坐标系下的坐标表示,所以其实直角坐标系和其他坐标系的转换我们上一节已经讲过: 11.3 坐标系与线性方程 我们之前所说的线性方程,都是相对于直角坐标系所说的,有时候有些问题直接在直角坐标系下进行求解并不容易,但是转换到另一坐标系下就会变得十分简单,这就得到了通过坐标系转换来求解问题的思路: 我们举个例子来说吧,如果下图中的T表示得到任意一个向量关于直线L的对称向量: 直接求解这个问题非常难,我们想要找的是一个矩阵A,使得T(x)=Ax,直线如果不是横轴或者纵轴的话,要找到这个矩阵A是十分困难的。但是如果直线是横轴或者纵轴的话,这个问题就变得非常简单。假设直线是横轴,那么要找的矩阵我们可以很容易写出: 所以我们可以通过坐标系变换,把直线L变成横轴,那么问题就简单了: 所以我们在直角坐标系下的这个变换矩阵A也就找到了,此时我们可以称两个坐标系下的变换矩阵是 相似矩阵(Similar matrices) : 假设直线L为y=0.5x,那么求解过程如下: 12、特征值和特征向量 12.1 什么是特征值和特征向量 好了,在写这一节之前,我们看来想一下上一节的东西,我们说一个直角坐标系下的向量v, 其在另一个坐标系下的坐标表示为Bv,这个B是该坐标系下的基所做成的矩阵,所以说 矩阵可以表示一种线性变换(Linear Transformation) ,它将一个向量在直角坐标系下的坐标表示转换为另一坐标系下的坐标表示! 我们知道,任意非零向量都可以张成一条直线,有的向量在一个矩阵A作用后,偏离了其所张成的空间;但有的向量在矩阵A作用后,还是在原有张成的空间,矩阵A只是对该向量起到了一定的伸缩作用,那么我们就说该向量是矩阵A的 特征向量(Eigenvector) ,而这个伸缩作用的大小我们就称为 特征值(Eigenvalue) 。所以我们知道,该向量所张成空间中的所有向量(零向量除外)都是该矩阵的特征向量。下面的例子中,经过变换后横轴没有发生变化,所以横轴的向量都是特征向量,特征值为1。 好了,我们可以给出特征值和特征向量的定义了: 12.2 如何计算特征向量 假设我们已经知道了特征值λ,我们可以根据Av=λv求解其对应的特征向量: 而某一特征值λ的 特征空间(Eigenspace) 定义为(A-λIn)v=0的解集: Eigenspace也可以说是λ所对应的特征向量再加上零向量(特征向量不能是零向量) 12.3 检查一个标量是否为特征值 检查一个标量是否为特征值,只需要判断其对应的特征空间是否只有零向量即可: 12.4 计算特征值 如果一个标量是矩阵A的特征值,那么他会满足下面所有的条件: 那么如何计算一个矩阵的特征值呢,这里要使用 特征多项式(Characteristic Polynomial) ,特征值是特征多项式的根。即: 举个例子: 这里我们可以得到一个性质,两个相似矩阵的特征值是相同的,证明如下: 那么一个n阶方阵有多少特征值呢?最多n个。如果一个n阶方阵有n个特征值(包括重复值),那么这n个特征值的的和等于矩阵的迹(trace,即矩阵主对角线的元素之和),同时,这n个特征值的乘积等于矩阵的行列式。 对特征多项式进行因式分解,我们可以得到如下重要的结论,一个特征值对应的特征空间的维度,小于等于该特征值重复出现的次数。 举例来说: 12.5 正定矩阵&半正定矩阵 如果一个矩阵的所有特征值都大于0,那么这个矩阵被称为 正定矩阵(positive definite matrix) ,如过特征值都大于等于0,则称为 半正定矩阵 。 那么正定或者半正定矩阵的含义是什么呢?这里我们以正定矩阵为例。我们知道一个矩阵的A代表一种线性变化,那么如果一个矩阵是正定的,就有xTAx>0,假设x在经过A的变换后变为y,那么xTy>0,即x和y的内积大于0,或者说夹角小于90度。所以正定矩阵的直觉代表一个向量经过它的变化后的向量与其本身的夹角小于90度。 13、对角化 13.1 可对角化 如果一个n阶方阵A可以变为A=PDP-1,其中D是n阶对角矩阵,P是n阶可逆方阵,那么A就是 可对角化的(diagonalizable) 。但并非所有的矩阵都可以进行对角化: 如果A是可对角化的,那么P中的列向量是A的特征向量,D中对角线元素是A的特征值,证明如下: 同时,我们可以得到如下结论: 13.2 可对角化的性质 本节我们介绍几个重要的性质, 1)不同特征值对应的特征向量之间线性无关。 2)如果一个矩阵A可对角化,那么其特征值对应的特征空间的维度,等于该特征值重复出现的次数。 3)如果一个矩阵A可对角化,那么Am= PDmP-1。 我们首先来看第一个性质: 我们可以假设他们之间线性相关来进行反证: 再来看第二个性质: 14、正交 14.1 范数和距离 我们常用 范数(Norm) 来表示矩阵的长度,其中最常用的是二范数: 两个向量的距离,我们使用的一般是欧式距离: 14.2 点积和正交 点积(Dot Product) 的计算如下: 两个向量是 正交的(Orthogonal) ,如果两个向量的点积是0,那么零向量和任何向量都是正交的。 点积具有如下的性质: 同时,如果两个向量是正交的,那么有如下性质: 在三角形中,我们有著名的三角不等式,两条边长度之和大于第三条边的长度,所以我们有: 14.3 正交补 对于一个非空的向量集合S,该集合的 正交补(Orthogonal Complement) 定义为: 关于正交补,我们有如下性质:

295 评论(10)

相关问答

  • 线性代数经管类自考知识点汇总

    线性代数自考最重要的部分是矩阵,行列式和线性方程组。 线性代数学习方法 1.重点标记记忆法 拿一个笔记本,并在学习时标记重要和困难的知识,并在以后的考试前将其加

    smile筱123 2人参与回答 2024-09-21
  • 线性代数自考知识点总结

    线性代数自考最重要的部分是矩阵,行列式和线性方程组。线性代数学习方法1.重点标记记忆法拿一个笔记本,并在学习时标记重要和困难的知识,并在以后的考试前将其加以整理

    我是漂亮小小妞 2人参与回答 2024-09-20
  • 线性代数自考知识点汇总

    线性代数知识点总结 线性代数知识在学习的几个阶段都有相关的知识点出现,下面线性代数知识点总结是我为大家整理的,在这里跟大家分享一下。 线性代数在考研数学中占有重

    lilybell714 2人参与回答 2024-09-20
  • 线性代数自考知识点汇总图

    线性代数知识点总结 线性代数知识在学习的几个阶段都有相关的知识点出现,下面线性代数知识点总结是我为大家整理的,在这里跟大家分享一下。 线性代数在考研数学中占有重

    meimeimilly 2人参与回答 2024-09-21
  • 线性代数自考知识点汇总图片

    线性代数知识点总结 线性代数知识在学习的几个阶段都有相关的知识点出现,下面线性代数知识点总结是我为大家整理的,在这里跟大家分享一下。 线性代数在考研数学中占有重

    jiangyue514悦兔 2人参与回答 2024-09-21

自考地区